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1.1 Introduction: Eukaryotic chromatin structure
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1.2 Hi-C: high-throughput chromosomes conformation capture
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1.2 Some of known conformation capture techniques

Type of probing |Assay abbreviation |Full assay name Year
1vs 1 3C Chromosome conformation capture 2002
Multiplexed 3C-seq |[Multiplexed chromosome conformation capture sequencing 2011
Open-ended 3C Open-ended chromosome conformation capture 2006
4C Chromosome conformation capture-on-chip 2006
ACT Associated chromosome trap 2006
e4C Enhanced chromosome conformation capture-on-chip 2010
1 vs Many/All ' i ' '
y/ 3C-DSL Chromosome conformation capture combined with DNA selection |, .,
and ligation
AC-seq Chromosome conFormatlon capture-on-chip combined with high- 2011
throughput sequencing
4C Circular chromosome conformation capture 2012
TLA Targeted locus amplification 2014
5C Chromosome conformation capture carbon copy 2006
Many vs Many — ; ; - -
ChIA-PET Chromatin interaction analysis paired-end tag sequencing 2009
Capture-3C Chromosome conformation capture coupled with oligonucleotide 2014
Many vs All capture technology
Capture-HiC Hi-C coupled with oligonucleotide capture technology 2014
GCC Genome conformation capture 2009
Hi-C Genome-wide chromosome conformation capture 2009
Genome-wide chromosome conformation capture with enrichment
ELP c 2010
of ligation products
TCC Tethered conformation capture 2012
All vs All Single-cell Hi-C Single-cell genome-wide chromosome conformation capture 2013
In situ Hi-C Genome-wide chromosome conformation capture with in situ 2014
ligation
DNase Hi-C Genome-wide chromosome conformation capture with DNase | 2015
digestion
Micro-C Genome-wide chromosome conformation capture with micrococcal | , ;¢
nuclease digestion
GAM Genome Architecture Mapping 2017

7 Adopted from Schmitt Nature Reviews 2016



Chromatin interactions map
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Adopted from Imakaev et al. Nature Methods 2012



1.3 Interaction map features: Chromosome territories

At the highest level of spatial organization, trans-interactions are rare.

Individual chromosomes occupy distinct territories within the nucleus.
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9 Bonev et al. Nature Reviews 2016



1.3 Topologically-associating domains (TADS)

Chromosomes are further spatially segregated into sub-megabase scale
domains, or TADs.

10 Kb resolution IQTAD w CTCF () Cohesin
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10 Bonev et al. Nature Reviews 2016
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Chromatin compartments

- TADs have preferential long-range contacts with each other, fForming
two types of compartments, A and B (domains in compartment A
interact mostly with other type A domains, and vice versa).

- Two major compartments can be further subdivided into six different
subcompartments.

50 Kb resolution

41Mb chr2 79 Mb

Bonev et al. Nature Reviews 2016



Chromatin loops

Cis-regulatory elements of vertebrates, such as enhancers, are
separated by relatively long distances and can be brought into close
spatial proximity with its target through the formation of chromatin
loops.

There are also other cases of loops (e.g. between co-regulated genes,
between Polycomb-repressed genes).

Enhancer-promoter

5 Kb resolution

Architectural loop Polycomb-mediated

71.4 Mb chr2 71.86 Mb

12 Bonev et al. Nature Reviews 2016



"The Zoo"
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Single-cell Hi-C
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Single-cell Hi-C

Ensemble (bulk) Hi-C:
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Single-cell Hi-C

Another method from 2017;
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16 Stevens et al. Nature 2017



Single-cell Hi-C

Data modelling based on single-cell can be very powerful:

A compartment B compartment LADs High RNA expression Chromosome territories

17 Stevens et al. Nature 2017



Single-cell Hi-C

One more method from 2017: single-cell combinatorial indexed Hi-C (sciHi-C)

Nuclei remain intact
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18 Ramani et al. Nature methods 2017



How many contacts do we recover?

' Recovery of the

Total number of . Number of contacts |

reads per Number of cells i total possible
: : per cell L .
experiment 5 ligation junction
10 cells with > 1000
Nagano 2013 5-15mln contacts 11,000-30,000 < 2%
Stevens, 2017 1.5-4.8 mln 8 537,000-1 22,000 1.2-4.1%
36 cells with
:>30,000 contacts
Flyamer, 2017 ~15-83 mln : . up to 1,906,000 ~10%
1219 cells with > i
: 1000 contacts
Ramani, 2017  |20-500 mln 10,696 cells with> 59 444 75 000
: 1,000 contacts 5 !

19



2. From theory to practice:
Hi-C processing workflow




Hi-C processing workflow

1. Reads mapping: paired-end mode is not used, iterative mapping.
2. Filtering & binning

- Fragment assignment: the mapped read is assigned according to its 5'
mapped position, mapped read positions should fall close to a
restriction site

- Fragment filtering: multiple mapping, PCR duplicates, undigested
restriction sites

- Binning
- Bin level filtering: remove 1% low signal rows/columns
3. Balancing: correction for technical biases

4. Features calling (TADs, compartments, loops, etc.)

21
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Reads mapping

- lterative or split reads mapping is required.

Possible valid Hi-C products:

\ / Reverse read

€

Forward read

i

——= 1} Mapping iterations

|

I A

|

|

Adopted from Lajoie et al., The Hitchhiker's guide to Hi-C analysis: Practical guidelines.
Methods 2015



Filtering at the level of fragments

- Possible Hi-C mapping results:

Hi-C molecule

Position and
direction of
mapped
read pairs

23
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- Hi-Crestriction fragments are assigned to bins (sequential same size
genomic windows) and aggregated by taking the sum:
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Matrix balancing

- Balancing is the procedure of correction of systematic technical bias in

data.

- Major balancing methods and two general types of balancing:

Computational

Approach Type Model assumption Implementation speed
Yaffe and Tana Restriction enzyme Perl and R Slow
y fragment lengths, GC
Explicit content and sequence
: mappability are three major
HICNorm systematic biases in Hi-C R Fast
Ilterative
correction (ICE) Python Fast
All the bias is captured by
Knight and Ruiz [Implicit the sequencing coverage of |JAVA Fast
each bin, equal visibility
HiC-Pro Python and R Very fast

25

Adopted from Schmitt et al. Nature Reviews 2016



2.3 lterative correction

lteratively corrected

R T R R R R W WA R T

Chromosome 1 Raw coverage Chromosome X  Chromosome 1 Corrected coverage Chromosome X

Imakaev et al. Nature Methods 2012



Matrix balancing

HiCNorm

Whole chromosome

Multi-Mb |

TAD

137.71 136.5 137.71

Schmitt et al. Nature Reviews 2016

136.5 137.71  136.5 137.71 136.5

27
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TADs calling

- TADs are hierarchical, there is no gold standard for TADs selection:

Dixon et al. Domains

178120000

For example, Armatus
algorithm is based on dynamic
programming and has variable
parameter, gamma.

180560000

183000000

178120000 180560000 183000000
IMR90 Fibroblast, Chromosome 1

Filippova et al. Algorithms for Molecular Biology 2014
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A recent comparison of multiple TADs calling tools:
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Compartments calling

- Method from Lieberman-Aiden, 2009:
@ Normalization of interaction matrix by expected interactions:
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30 Lieberman-Aiden et al. Nature 2009



Compartments calling

-  Method from 2009:

@ Calculation of Pearson correlation

Observed/Expected Pearson correlation
1 o T D

Chr 14
Chr14

31 Lieberman-Aiden et al. Nature 2009
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Compartments calling

Eigenvector decomposition:

@ Eigenvector expansion (PCA, principal component analysis)
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Lieberman-Aiden et al. Nature 2009



2.5 Some tools for basic Hi-C data processing

. Language % Year

Fit-Hi-C Python 52014

cotwic R 2015
HOMER ~ |perl,lR 2010
HIPPE  |python,Per,R | 2015
diffic ~~ |R,Python | 2015
HiCCUPS / Juicer  |Java | 2014,2016
Juicer | Java 2016
TADE  |python 207
hicib ~ |Python 2012

33 Forcato et al. Nature Methods 2017



Single-cell data analysis

Generally the same processing workflow, except:
Stringent amplification duplicates Filtering.

Example elimination of counting the same ligation junction many times
(Flyamer et al. Nature 2017): if two reads map to the same strand, and each
side of the read is within 500 bp of any side of the other read, only one
copy of the read is retained.

lterative correction and normalization are not applicable due to data
sparsity.
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34 Flyamer et al. Nature 2017



Single-cell data analysis

Indirect detection of compartments, TADs and loops due to data sparsity:

Compartmentalization Average loop Average TAD

All oocytes

Cell 6

Cell 9
—
r .

Cell 10

35
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0.0
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Inactive —80 kb
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+70 kb
s—

0.8
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0.32 0.88
Effective cont. prok

Flyamer et al. Nature 2017



Single-cell data analysis

Still, TAD-like structures ("contact domains") could be found directly:

Mb 50Mb 52Mb 54Mb 56Mb 58 Mb
Chr 2

36 Flyamer et al. Nature 2017



3. From theory to practice:
workshop overview




Workshop overview

Single-cell and bulk Hi-C raw datasets from Flyamer et al. Nature 2017
(GEO: GSE80006)

Data processing with hiclib (one of the best Hi-C data practices since 2012):
lterative mapping of reads with bowtie?2
Data filtering
Binning
Data visualization
TADs calling
Comparison of single-cell and bulk Hi-C experiments

Compartments detection

Powered by: ﬁ pgthon *dOCker
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