

Skolkovo Institute of Science and Technology

Single-cell Hi-C data analysis

Introductory lecture for NGS School 2017 workshop Aleksandra Galitsyna

ARTICLE

Single-cell Hi-C reveals cell-to-cell variability in chromosome structure

Takashi Nagano¹*, Yaniv Lubling²*, Tim J. Stevens³*, Stefan Schoenfelder¹, Eitan Yaffe², Wendy Dean⁴, Ernest D. Laue³, Amos Tanay² & Peter Fraser¹

¹Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK. ²Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute, Rehovot 76100, Israel. ³Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK. ⁴Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.

2017

doi:10.1038/nature21711

Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition

Ilya M. Flyamer^{1,2,3}*†, Johanna Gassler¹*, Maxim Imakaev^{4,5}*, Hugo B. Brandão⁶, Sergey V. Ulianov^{2,3}, Nezar Abdennur⁷, Sergey V. Razin^{2,3}, Leonid A. Mirny^{4,5,6}§ & Kikuë Tachibana–Konwalski¹§

¹IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria. ²Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia. ³Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia. ⁴Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁶Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁶Harvard Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA. ⁷Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02138, USA. ⁷Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02138, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02138, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02138, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational and Systems Biology Program, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational Academy (MIT), Cambridge, Massachusetts 02139, USA. ⁹Computational Academy (MIT), Cambridge, Massachusetts

Single-cell Hi-C research in a large collaboration

- Kikuë Tachibana-Konwalski's lab from Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC, Vienna, Austria
- Prof. Leonid Mirny's lab from MIT, Cambridge, Massachusetts, USA
- Prof. Sergey Razin's lab from Institute of Gene Biology of Russian Academy of Sciences (IGB RAS), Moscow, Russia
- Prof. Mikhail Gelfand's lab from Institute for Information Transmission Problems of Russian Academy of Sciences (IITP RAS), Moscow, and Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia

Outline

- Introduction
 - Eukaryotic chromatin structure
 - Hi-C and chromatin interaction map
 - Interaction map features: TADs, compartments, loops
 - Single-cell Hi-C
- From theory to practice: Hi-C data processing workflow
 - Reads mapping
 - Binning & filtering
 - Matrix balancing
 - TADs and compartments calling
 - Single-cell data analysis
- Workshop overview

1.1 Introduction: Eukaryotic chromatin structure

5

1.2 Hi-C: high-throughput chromosomes conformation capture

Lieberman-Aiden et al. Science 2009

1.2 Some of known conformation capture techniques

Type of probing	Assay abbreviation	Full assay name	Year
1 vs 1	3C	Chromosome conformation capture	2002
1 vs Many/All	Multiplexed 3C-seq	Multiplexed chromosome conformation capture sequencing	2011
	Open-ended 3C	Open-ended chromosome conformation capture	
	4C	Chromosome conformation capture-on-chip	
	ACT	Associated chromosome trap	
	e4C	Enhanced chromosome conformation capture-on-chip	2010
	3C-DSL	Chromosome conformation capture combined with DNA selection and ligation	2011
	4C-seq	Chromosome conformation capture-on-chip combined with high- throughput sequencing	
	4C	Circular chromosome conformation capture	2012
	TLA	Targeted locus amplification	2014
Many vs Many	5C	Chromosome conformation capture carbon copy	2006
	ChIA-PET	Chromatin interaction analysis paired-end tag sequencing	2009
Many vs All	Capture-3C	Chromosome conformation capture coupled with oligonucleotide capture technology	
	Capture-HiC	Hi-C coupled with oligonucleotide capture technology	2014
	GCC	Genome conformation capture	2009
	Hi-C	Genome-wide chromosome conformation capture	
	ELP	Genome-wide chromosome conformation capture with enrichment of ligation products	
	ТСС	Tethered conformation capture	
All vs All	Single-cell Hi-C	Single-cell genome-wide chromosome conformation capture	2013
	In situ Hi-C	Genome-wide chromosome conformation capture with in situ ligation	
	DNase Hi-C	Genome-wide chromosome conformation capture with DNase I digestion	
	Місго-С	Genome-wide chromosome conformation capture with micrococcal nuclease digestion	2015
	GAM	Genome Architecture Mapping	2017

Adopted from Schmitt *Nature Reviews* 2016

Chromatin interactions map

Adopted from Imakaev et al. *Nature Methods* 2012

1.3 Interaction map features: Chromosome territories

- At the highest level of spatial organization, trans-interactions are rare.
- Individual chromosomes occupy distinct territories within the nucleus.

1.3 Topologically-associating domains (TADs)

 Chromosomes are further spatially segregated into sub-megabase scale domains, or TADs.

- TADs have preferential long-range contacts with each other, forming two types of compartments, A and B (domains in compartment A interact mostly with other type A domains, and vice versa).
- Two major compartments can be further subdivided into six different subcompartments.

- Cis-regulatory elements of vertebrates, such as enhancers, are separated by relatively long distances and can be brought into close spatial proximity with its target through the formation of chromatin loops.
- There are also other cases of loops (e.g. between co-regulated genes, between Polycomb-repressed genes).

"The Zoo" of chromatin features

Fraser et al. *Microbiology and Molecular Biology Reviews* 2015

Nagano et al. Nature 2013

1.4

Another method from 2017:

Data modelling based on single-cell can be very powerful:

1.4

Single-cell Hi-C

One more method from 2017: single-cell combinatorial indexed Hi-C (sciHi-C)

Ramani et al. Nature methods 2017

How many contacts do we recover?

	Total number of reads per experiment	Number of cells	Number of contacts per cell	Recovery of the total possible ligation junction
Nagano 2013	5 - 15 mln	10 cells with > 1000 contacts	11,000-30,000	< 2%
Stevens, 2017	1.5 - 4.8 mln	8	37,000-122,000	1.2-4.1%
Flyamer, 2017	~15-83 mln	36 cells with >30,000 contacts 219 cells with > 1000 contacts	up to 1,906,000	~ 10%
Ramani, 2017	20-500 mln	10,696 cells with > 1,000 contacts	59,000-72,000	-

2. From theory to practice: Hi-C processing workflow

- 1. Reads mapping: paired-end mode is not used, iterative mapping.
- 2. Filtering & binning
 - Fragment assignment: the mapped read is assigned according to its 5' mapped position, mapped read positions should fall close to a restriction site
 - Fragment filtering: multiple mapping, PCR duplicates, undigested restriction sites
 - Binning
 - Bin level filtering: remove 1% low signal rows/columns
- 3. Balancing: correction for technical biases
- 4. Features calling (TADs, compartments, loops, etc.)

2.

• Iterative or split reads mapping is required.

Adopted from Lajoie et al., The Hitchhiker's guide to Hi-C analysis: Practical guidelines. *Methods* 2015

Filtering at the level of fragments

• Possible Hi-C mapping results:

2.2

Binning

 Hi-C restriction fragments are assigned to bins (sequential same size genomic windows) and aggregated by taking the sum:

Binned interactions heatmap

- Balancing is the procedure of correction of systematic technical bias in data.
- Major balancing methods and two general types of balancing:

Approach	Туре	Model assumption	Implementation	Computational speed
Yaffe and Tanay	Explicit	Restriction enzyme fragment lengths, GC content and sequence mappability are three major systematic biases in Hi-C	Perl and R	Slow
HiCNorm			R	Fast
Iterative correction (ICE)	Implicit	All the bias is captured by the sequencing coverage of each bin, equal visibility	Python	Fast
Knight and Ruiz			JAVA	Fast
НіС-Рго			Python and R	Very fast

Raw

Iterative correction

Iteratively corrected

Imakaev et al. Nature Methods 2012

Matrix balancing

Schmitt et al. *Nature Reviews* 2016

TADs calling

• TADs are hierarchical, there is no gold standard for TADs selection:

For example, Armatus algorithm is based on dynamic programming and has variable parameter, gamma.

Filippova et al. *Algorithms for Molecular Biology* 2014

TADs calling

• A recent comparison of multiple TADs calling tools:

Normalization of interaction matrix by expected interactions:

9

Lieberman-Aiden et al. Nature 2009

• Method from 2009:

Calculation of Pearson correlation

• Eigenvector decomposition:

Eigenvector expansion (PCA, principal component analysis)

2.5 Some tools for basic Hi-C data processing

	:	:
	Language	Үеаг
Fit-Hi-C	Python	2014
GOTHIC	R	2015
HOMER	Perl, R	2010
HIPPIE	Python, Perl, R	2015
diffHic	R, Python	2015
HiCCUPS / Juicer	Java	2014, 2016
Juicer	Java	2016
TADbit	Python	2017
hiclib	Python	2012

- Generally the same processing workflow, except:
 - Stringent amplification duplicates filtering.

Example elimination of counting the same ligation junction many times (Flyamer et al. *Nature* 2017): if two reads map to the same strand, and each side of the read is within 500 bp of any side of the other read, only one copy of the read is retained.

Iterative correction and normalization are not applicable due to data sparsity.

• Indirect detection of compartments, TADs and loops due to data sparsity:

Flyamer et al. *Nature* 2017

• Still, TAD-like structures ("contact domains") could be found directly:

3. From theory to practice: workshop overview

Workshop overview

- Single-cell and bulk Hi-C raw datasets from Flyamer et al. Nature 2017 (GEO: GSE80006)
- Data processing with hiclib (one of the best Hi-C data practices since 2012):
 - Iterative mapping of reads with bowtie2
 - Data filtering
 - Binning
 - Data visualization
 - TADs calling
 - Comparison of single-cell and bulk Hi-C experiments
 - Compartments detection
 - •
- Powered by:

