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Introduction: Eukaryotic chromatin structure
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Lieberman-Aiden et al. Science 20096

Hi-C: high-throughput chromosomes conformation capture

Procedure:

Resulting interactions heatmap:
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Adopted from Schmitt Nature Reviews 20167

Some of known conformation capture techniques

Type of probing Assay abbreviation Full assay name Year

1 vs 1 3C Chromosome conformation capture 2002

1 vs Many/All

Multiplexed 3C-seq Multiplexed chromosome conformation capture sequencing 2011
Open-ended 3C Open-ended chromosome conformation capture 2006
4C Chromosome conformation capture-on-chip 2006
ACT Associated chromosome trap 2006
e4C Enhanced chromosome conformation capture-on-chip 2010

3C-DSL Chromosome conformation capture combined with DNA selection 
and ligation 2011

4C-seq Chromosome conformation capture-on-chip combined with high-
throughput sequencing 2011

4C Circular chromosome conformation capture 2012
TLA Targeted locus amplification 2014

Many vs Many
5C Chromosome conformation capture carbon copy 2006
ChIA-PET Chromatin interaction analysis paired-end tag sequencing 2009

Many vs All
Capture-3C Chromosome conformation capture coupled with oligonucleotide 

capture technology 2014

Capture-HiC Hi-C coupled with oligonucleotide capture technology 2014

All vs All 

GCC Genome conformation capture 2009
Hi-C Genome-wide chromosome conformation capture 2009

ELP Genome-wide chromosome conformation capture with enrichment 
of ligation products 2010

TCC Tethered conformation capture 2012
Single-cell Hi-C Single-cell genome-wide chromosome conformation capture 2013

In situ Hi-C Genome-wide chromosome conformation capture with in situ 
ligation 2014

DNase Hi-C Genome-wide chromosome conformation capture with DNase I 
digestion 2015

Micro-C Genome-wide chromosome conformation capture with micrococcal 
nuclease digestion 2015

GAM Genome Architecture Mapping 2017
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Chromatin interactions map
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, ij, for every pair of regions, (i,j), can be written  
as ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as i, i j, j 1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
putationally intensive machine-learning procedure16. This study 
calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij  BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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Figure 1 | Pipeline for mapping, filtering and 
iterative correction of Hi-C reads. (a) Interacting 
chromatin regions are sequenced and reads are 
mapped to the genome using iterative mapping. 
Only the depicted double-sided (DS) or single-
sided (SS) reads are retained. Blue bars show 
the fraction of DS reads mapped by truncation 
to fixed length; red line shows result of iterative 
mapping. (b,c) Raw and iteratively corrected 
whole-genome (all-by-all) Hi-C maps binned 
at 1-Mb resolution (filtered-out megabases are 
not shown). Coverage profile is the sum of each 
column in the map. Vertical yellow lines show 
chromosome boundaries. Note that after iterative 
correction, the coverage profile is uniform.  
(d) Fractions of SS and DS intrachromosomal 
reads as a function of centromeric distance, 
plotted at 1-Mb resolution for distances up to 
10 Mb from each centromere; lines represent 
mean values and vertical bars represent 25th 
and 75th percentiles. (e) Factorizable biases and 
eigenvectors (E1 and E2) obtained by ICE  
(at 1-Mb resolution). Regions that do not pass 
filters (see Online Methods) or contain no 
mapped reads are shown as gaps. Vertical yellow 
lines show boundaries of chromosomes.
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, ij, for every pair of regions, (i,j), can be written  
as ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as i, i j, j 1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
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calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij  BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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Figure 1 | Pipeline for mapping, filtering and 
iterative correction of Hi-C reads. (a) Interacting 
chromatin regions are sequenced and reads are 
mapped to the genome using iterative mapping. 
Only the depicted double-sided (DS) or single-
sided (SS) reads are retained. Blue bars show 
the fraction of DS reads mapped by truncation 
to fixed length; red line shows result of iterative 
mapping. (b,c) Raw and iteratively corrected 
whole-genome (all-by-all) Hi-C maps binned 
at 1-Mb resolution (filtered-out megabases are 
not shown). Coverage profile is the sum of each 
column in the map. Vertical yellow lines show 
chromosome boundaries. Note that after iterative 
correction, the coverage profile is uniform.  
(d) Fractions of SS and DS intrachromosomal 
reads as a function of centromeric distance, 
plotted at 1-Mb resolution for distances up to 
10 Mb from each centromere; lines represent 
mean values and vertical bars represent 25th 
and 75th percentiles. (e) Factorizable biases and 
eigenvectors (E1 and E2) obtained by ICE  
(at 1-Mb resolution). Regions that do not pass 
filters (see Online Methods) or contain no 
mapped reads are shown as gaps. Vertical yellow 
lines show boundaries of chromosomes.
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• At the highest level of spatial organization, trans-interactions are rare. 

• Individual chromosomes occupy distinct territories within the nucleus.

Bonev et al. Nature Reviews 20169

Interaction map features: Chromosome territories

Interchromosomal

Map is rotated by 90°, upper triangle visualized



• Chromosomes are further spatially segregated into sub-megabase scale 
domains, or TADs.

Bonev et al. Nature Reviews 201610

Topologically-associating domains (TADs)

10 Kb resolution

chr265.5 Mb 73.2 Mb

1.3
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• TADs have preferential long-range contacts with each other, forming 
two types of compartments, A and B (domains in compartment A 
interact mostly with other type A domains, and vice versa).  

• Two major compartments can be further subdivided into six different 
subcompartments.

Bonev et al. Nature Reviews 201611

Chromatin compartments

50 Kb resolution

chr241Mb 79 Mb
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• Cis-regulatory elements of vertebrates, such as enhancers, are 
separated by relatively long distances and can be brought into close 
spatial proximity with its target through the formation of chromatin 
loops. 

• There are also other cases of loops (e.g. between co-regulated genes, 
between Polycomb-repressed genes).

Bonev et al. Nature Reviews 201612

Chromatin loops

5 Kb resolution

chr271.4 Mb 71.86 Mb
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"The Zoo" of chromatin features

tions between chromosomes, even for loci hundreds of megabases
apart on a given chromosome (65, 87, 109). Accordingly, Heride
et al. demonstrated by 3D-FISH that homologous chromosomes
in a diploid cell are far apart from each other (135). Recent work
on haplotype reconstruction using Hi-C data supports these find-
ings by demonstrating that chromosome haplotypes in diploid
cells do not interact frequently with each other (136).

Although chromosomes mostly keep to themselves, they can
considerably interact with other CTs. For instance, contacts be-
tween small, gene-rich chromosomes in Hi-C libraries of human
lymphocytes were shown to occur more frequently than would be
expected based on their size (109). Several loci were shown to loop
out of their chromosome territory, coinciding with both an open
conformation and active expression and suggesting that the space
between chromosome territories might be important (48, 85, 86,
137–141). It is important to note, however, that our understand-
ing of the structure and biology of CTs is derived largely from
FISH experiments using probe sets that do not cover entire chro-

mosomes, and thus, such looping out might sometimes reflect
only extrusion from the visualized regions rather than the actual
CT (142). Nevertheless, comparison of the FISH signals from con-
ventional whole-chromosome “painting” (i.e., hybridization with
fluorescently labeled chromosome-specific probes) to those from
exome painting of the entire chromosome revealed that chroma-
tin segments at the surface of CTs are enriched for exons, residing
largely away from the more compact CT core, which is consistent
with looping out (39). Several groups demonstrated a significant
amount of intermingling between different chromosome territo-
ries on a cell-specific basis (64, 143, 144), although the extent of
these contacts remains an open question. Similarly, interchromo-
somal contacts between a select set of highly transcribed regions
were captured by TCC, and it was suggested that access to the
transcription machinery, possibly within transcription factories,
can drive the formation of contacts (121). Other studies using
genome-wide Hi-C data from mouse and human show that phys-
ical proximity prior to chromosomal rearrangement correlates

FIG 3 Chromatin organization across genomic scales. The chromatin fiber from one chromosome is unraveled to illustrate four different organization levels
described previously in the text. Chromatin conformations are presented from low (top) to high (bottom) resolutions. The chromatin fiber and corresponding
chromosome territory are shown in pink. A and B compartments (multimegabase scale) are shown separately to highlight their inherently distinct nature,
although there is no evidence that their conformations differ at the level of TADs (megabase scale). Three examples of chromatin looping (submegabase scale)
are shown: (i) enhancer-promoter, (ii) enhancer-silencer, and (iii) insulator-insulator. E, enhancer; P, promoter; S, silencer; I, insulator.

Fraser et al.
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2013 method: 

Flyamer et al. Nature 201714

Single-cell Hi-C

Nagano et al. Nature 2013

2017 method: 
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Flyamer et al. Nature 201715

Single-cell Hi-C

Ensemble (bulk) Hi-C:

Single-cell Hi-C (2017): 
(multiple)
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Stevens et al. Nature 201716

Single-cell Hi-C
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data provides insights into the organization of pluripotency factor- and 
nucleosome remodelling deacetylase (NuRD)-regulated genes.

Intact genome structures from single-cell Hi-C data
We imaged haploid mouse ES cell nuclei, expressing fluorescently 
tagged CENP-A (the centromeric histone H3 variant) and histone H2B 
proteins, to select G1-phase cells (Extended Data Fig. 1a) and later val-
idate the structures. Hi-C processing of eight individual mouse ES cells 
yielded 37,000–122,000 contacts (Extended Data Table 1), representing 
1.2–4.1% recovery of the total possible ligation junctions. In single cells, 
unlike in population data, Hi-C contacts are observed between distinct 
and different sets of chromosomes (Fig. 1b and Extended Data Fig. 1b).

Using a particle-on-a-string representation and an extended simu-
lated annealing protocol, we calculated highly consistent 3D genome 
structures (ensemble root mean square deviation (r.m.s.d.) <  1.75 
particle radii) with discrete chromosome territories (Fig. 1c and 
Supplementary Videos 1, 2). The structures were calculated with an 
average of 1–3 Hi-C contact-derived restraints for each 100-kb particle  
(with a total of 26,000–75,000 restraints; Extended Data Table 2 
and Extended Data Fig. 1c). Recalculation after randomly omitting 
10–70% of the data reliably generated the same folded conformation 
(r.m.s.d. <  2.5 particle radii). Moreover, structure calculations after 

randomly merging half of the data from two different cells resulted in 
a vast increase in the number of violated experimental restraints (37.4% 
have a distance of more than 4 particle radii, compared with 5–6% for 
the separate data), and generated compacted, highly inconsistent struc-
tures (Extended Data Fig. 1d). Thus, single-cell Hi-C datasets cannot 
result from independent sampling of contacts from a single underlying  
conformation. In addition, cells with either a broken/recombined 
chromosome (Extended Data Fig. 1e) or a duplicated chromosome 
(Extended Data Fig. 1f) can be immediately recognized from the data.

Structure validation and contact coverage
A consistent Rabl configuration (with centromeres and telomeres clus-
tered on opposite sides of the nucleus) was observed in all G1-phase 
ES cells, strongly validating the structures (Fig. 2a, Extended Data 
Fig. 2a and Supplementary Video 3). Figure 2b shows two examples 
of CENP-A image superposition with the corresponding genome 
structure from the same cell, providing independent evaluation of the 
reliability of the structures. Cell 7 shows typical clustering of the peri-
centromeric regions in a cavity on one side of the structure, which is 
clearly supported by the centromere positions in the CENP-A image. In 
cell 8, the centromeres are more diffusely distributed in both the image 
and the structure. The structures were also validated by comparison 
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Figure 2 | Large-scale structure of the genome. a, Five superimposed 
structures from a single cell in three different orientations, with the 
chromosomes coloured from red to purple (centromere to telomere). 
b, Superposition of two single-cell structures with images of mEos3.2-
tagged CENP-A recorded from the same single cells. The centromeres 
from the images are shown as yellow spheres and the centromeric ends 
of the chromosomes are coloured red. The same structures after rotation 
by 90° are shown below. c, 3D structure of a haploid mouse ES genome 
with expanded views of the separate chromosome territories (left), and 
the spatial distribution of the A (blue) and B (red) compartments (right). 
d, Structure of chromosome 9 from two different cells coloured from 
red to purple (centromere to telomere) (left), or according to whether 

the sequence is found in either the A (blue) or the B (red) compartments 
(right). e, Cross-sections through five superimposed 3D structures from 
two different cells, coloured according to: whether the sequence is in the A 
or B compartment (left); whether the sequence is part of a cLAD (yellow) 
or contains highly expressed genes (blue) (centre); and chromosome 
identity (right). f, Structures of selected chromosomes from a single cell 
illustrating the different ways chromosomes can contribute to the A and B 
compartments. g, Chromosome 3 from a single cell with the positions of 
highly expressed genes shown as blue circles (larger circles indicate higher 
expression) and lamina-associated regions shown in yellow (left), and in 
which the sequence is coloured according to whether it is in the A or B 
compartment (right).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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3D structures of individual mammalian 
genomes studied by single-cell Hi-C
Tim J. Stevens1,2*, David Lando1*, Srinjan Basu1*, Liam P. Atkinson1, Yang Cao1, Steven F. Lee3, Martin Leeb4†, Kai J. Wohlfahrt1, 
Wayne Boucher1, Aoife O’Shaughnessy-Kirwan1,4, Julie Cramard4, Andre J. Faure5, Meryem Ralser4, Enrique Blanco5, 
Lluis Morey5†, Miriam Sansó5, Matthieu G. S. Palayret3,  Ben Lehner5,6,7, Luciano Di Croce5,6,7, Anton Wutz4†, Brian Hendrich1,4, 
Dave Klenerman3 & Ernest D. Laue1

Our understanding of nuclear architecture has been built on electron 
and light microscopy studies that suggest the existence of territories 
pervaded by an inter-chromosomal space through which molecules  
diffuse to and from their sites of action1. In parallel, biochemical studies,  
in particular chromosome conformation capture experiments (such as 
3C and Hi-C) in which DNA sequences in close spatial proximity in 
the nucleus are identified after restriction enzyme digestion and DNA 
ligation, have provided molecular information about chromosome 
folding2. At the megabase scale, Hi-C experiments have partitioned 
the genome into two (A or B) compartments3. In addition, they have 
provided evidence for 0.5–1.0-Mb topological-associated domains 
(TADs)4–6, as well as smaller loops (hundreds of kilobases)7. 3C-type 
experiments have further shown that enhancers make direct physical  
interactions with promoters, and that these interactions are stabi-
lized by a network of protein–protein interactions involving CTCF, 
cohesin and Mediator8,9. Although probabilistic methods can be used to  
calculate ensembles of low-resolution models that are consistent with 
population Hi-C data10,11, understanding genome structure at higher 
resolution requires the development of single-cell approaches.

In mitotic cells, both TADs and A/B compartments disappear12 
and thus the structural complexity of interphase chromosomes is re- 
established during the G1 phase. To study interphase genome structure,  
we have combined imaging with an improved Hi-C protocol (Fig. 1a) 
to determine whole-genome structures of single G1-phase haploid 
mouse embryonic stem (ES) cells at the 100-kb scale. The structures 
allow us to study TAD and loop structure genome-wide, to analyse 
the principles underlying genome folding, and to understand which 
factors may be important for driving chromosome/genome structure.  
We also illustrate how combining single-cell genome structures with 
population-based RNA sequencing (RNA-seq) and chromatin immu-
noprecipitation followed by high-throughput sequencing (ChIP–seq) 

The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is 
crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new 
chromosome conformation capture procedure that allows us to first image and then process single cells. The technique 
enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The 
structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and 
B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on 
a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes 
regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination 
of single-cell genome structure provides a new approach for investigating biological processes.

1Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. 2MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical 
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Figure 1 | Calculation of 3D genome structures from single-cell Hi-C 
data. a, Schematic of the protocol used to image and process single nuclei. 
b, Colour-density matrices representing the relative number of contacts 
observed between different pairs of chromosomes. c, Five superimposed 
structures from a single cell, from repeat calculations using 100-kb 
particles and the same experimental data, with the chromosomes coloured 
differently. An expanded view of chromosome 10 (Chr 10) is shown, 
coloured from red to purple (centromere to telomere), together with an 
illustration of the restraints determining its structure.
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Another method from 2017:

Structure modelling results:
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data provides insights into the organization of pluripotency factor- and 
nucleosome remodelling deacetylase (NuRD)-regulated genes.

Intact genome structures from single-cell Hi-C data
We imaged haploid mouse ES cell nuclei, expressing fluorescently 
tagged CENP-A (the centromeric histone H3 variant) and histone H2B 
proteins, to select G1-phase cells (Extended Data Fig. 1a) and later val-
idate the structures. Hi-C processing of eight individual mouse ES cells 
yielded 37,000–122,000 contacts (Extended Data Table 1), representing 
1.2–4.1% recovery of the total possible ligation junctions. In single cells, 
unlike in population data, Hi-C contacts are observed between distinct 
and different sets of chromosomes (Fig. 1b and Extended Data Fig. 1b).

Using a particle-on-a-string representation and an extended simu-
lated annealing protocol, we calculated highly consistent 3D genome 
structures (ensemble root mean square deviation (r.m.s.d.) <  1.75 
particle radii) with discrete chromosome territories (Fig. 1c and 
Supplementary Videos 1, 2). The structures were calculated with an 
average of 1–3 Hi-C contact-derived restraints for each 100-kb particle  
(with a total of 26,000–75,000 restraints; Extended Data Table 2 
and Extended Data Fig. 1c). Recalculation after randomly omitting 
10–70% of the data reliably generated the same folded conformation 
(r.m.s.d. <  2.5 particle radii). Moreover, structure calculations after 

randomly merging half of the data from two different cells resulted in 
a vast increase in the number of violated experimental restraints (37.4% 
have a distance of more than 4 particle radii, compared with 5–6% for 
the separate data), and generated compacted, highly inconsistent struc-
tures (Extended Data Fig. 1d). Thus, single-cell Hi-C datasets cannot 
result from independent sampling of contacts from a single underlying  
conformation. In addition, cells with either a broken/recombined 
chromosome (Extended Data Fig. 1e) or a duplicated chromosome 
(Extended Data Fig. 1f) can be immediately recognized from the data.

Structure validation and contact coverage
A consistent Rabl configuration (with centromeres and telomeres clus-
tered on opposite sides of the nucleus) was observed in all G1-phase 
ES cells, strongly validating the structures (Fig. 2a, Extended Data 
Fig. 2a and Supplementary Video 3). Figure 2b shows two examples 
of CENP-A image superposition with the corresponding genome 
structure from the same cell, providing independent evaluation of the 
reliability of the structures. Cell 7 shows typical clustering of the peri-
centromeric regions in a cavity on one side of the structure, which is 
clearly supported by the centromere positions in the CENP-A image. In 
cell 8, the centromeres are more diffusely distributed in both the image 
and the structure. The structures were also validated by comparison 
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Figure 2 | Large-scale structure of the genome. a, Five superimposed 
structures from a single cell in three different orientations, with the 
chromosomes coloured from red to purple (centromere to telomere). 
b, Superposition of two single-cell structures with images of mEos3.2-
tagged CENP-A recorded from the same single cells. The centromeres 
from the images are shown as yellow spheres and the centromeric ends 
of the chromosomes are coloured red. The same structures after rotation 
by 90° are shown below. c, 3D structure of a haploid mouse ES genome 
with expanded views of the separate chromosome territories (left), and 
the spatial distribution of the A (blue) and B (red) compartments (right). 
d, Structure of chromosome 9 from two different cells coloured from 
red to purple (centromere to telomere) (left), or according to whether 

the sequence is found in either the A (blue) or the B (red) compartments 
(right). e, Cross-sections through five superimposed 3D structures from 
two different cells, coloured according to: whether the sequence is in the A 
or B compartment (left); whether the sequence is part of a cLAD (yellow) 
or contains highly expressed genes (blue) (centre); and chromosome 
identity (right). f, Structures of selected chromosomes from a single cell 
illustrating the different ways chromosomes can contribute to the A and B 
compartments. g, Chromosome 3 from a single cell with the positions of 
highly expressed genes shown as blue circles (larger circles indicate higher 
expression) and lamina-associated regions shown in yellow (left), and in 
which the sequence is coloured according to whether it is in the A or B 
compartment (right).
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1.4

Stevens et al. Nature 201717

Single-cell Hi-C

Data modelling based on single-cell can be very powerful:



1.4

Ramani et al. Nature methods 201718

Single-cell Hi-C

One more method from 2017: single-cell combinatorial indexed Hi-C (sciHi-C ) 
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How many contacts do we recover?

Total number of 
reads per 

experiment
Number of cells

Number of contacts 
per cell

Recovery of the 
total possible 
ligation junction 

Nagano 2013 5 - 15 mln
10 cells with > 1000 
contacts 11,000-30,000 < 2% 

Stevens, 2017 1.5 - 4.8 mln 8 37,000-122,000 1.2-4.1% 

Flyamer, 2017 ~15-83 mln

36 cells with 
>30,000 contacts 

219 cells with > 
1000 contacts

 up to 1,906,000 ~ 10% 

Ramani, 2017 20-500 mln 10,696 cells with > 
1,000 contacts

59,000-72,000 -



2. From theory to practice: 
Hi-C processing workflow



2.

1. Reads mapping: paired-end mode is not used, iterative mapping. 

2. Filtering & binning 

• Fragment assignment: the mapped read is assigned according to its 5' 
mapped position, mapped read positions should fall close to a 
restriction site 

• Fragment filtering: multiple mapping, PCR duplicates, undigested 
restriction sites 

• Binning 

• Bin level filtering: remove 1% low signal rows/columns 

3. Balancing: correction for technical biases 

4. Features calling (TADs, compartments, loops, etc.)

21

Hi-C processing workflow



2.1

• Iterative or split reads mapping is required.

Adopted from Lajoie et al., The Hitchhiker's guide to Hi-C analysis: Practical guidelines.  
Methods 201522

Reads mapping

} Mapping iterations

Forward read
Reverse read

Possible valid Hi-C products:



• Possible Hi-C mapping results:

2.2

Imakaev et al. Nature Methods 201223

Filtering at the level of fragments



2.2

• Hi-C restriction fragments are assigned to bins (sequential same size 
genomic windows) and aggregated by taking the sum:

24
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2.3

• Balancing is the procedure of correction of systematic technical bias in 
data.  

• Major balancing methods and two general types of balancing:

Adopted from Schmitt et al. Nature Reviews 201625

Matrix balancing

Approach Type Model assumption Implementation Computational 
speed

Yaffe and Tanay

Explicit

Restriction enzyme 
fragment lengths, GC 
content and sequence 
mappability are three major 
systematic biases in Hi-C

Perl and R Slow

HiCNorm R Fast

Iterative 
correction (ICE)

Implicit
All the bias is captured by 
the sequencing coverage of 
each bin, equal visibility

Python Fast

Knight and Ruiz JAVA Fast

HiC-Pro Python and R Very fast



2.3

Imakaev et al. Nature Methods 201226

Iterative correction



2.3

Schmitt et al. Nature Reviews 201627

Matrix balancing

Nature Reviews | Molecular Cell Biology
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Figure 2 | Comparison of computational methods to account for bias in 
Hi-C data. We reprocessed high-resolution Hi-C data from IMR90 cells19 

uniformly until the bias-removal step, at which point either raw contact 
matrices were generated or normalization was conducted with one of 

three methods. Here, we illustrate a semi-quantitative comparison  
of human chromosome 7 (chr7) for 3 genomic resolutions (whole 
chromo some, a multi-megabase (multi-Mb) locus and a topologically 

associating domain (TAD)) at 40 kb bin size for a raw Hi-C contact matrix 

(part a), an explicit model of bias removal (HiCNorm) (part b), and two 

methods of matrix-balancing algorithms for bias removal, namely a fast, 
rough, single-iteration balancing method, vanilla coverage (VC) (part c) and 

iterative correction and eigenvector decomposition (ICE) (part d). It can be 
visually appreciated that the explicit or implicit assumptions made by each 
method to account for biases result in quantitative differences in the 
normalized interaction frequency between loci. The intensity gradient is a 

linear increase from zero to the maximum noted (units are observed read 
counts for the raw matrices, and normalized read counts for the normalized 

matrix columns). Depicted are a series of symmetrical Hi-C contact 

matrices at various genomic resolutions. The rows (i) and columns (j) 

of each matrix represent bins along a chromosome, in this case various 
regions of human chr7. Each matrix entry [i,j] represents the observed or 
normalized interaction frequency between a pair of genomic loci. Pairwise 

interactions observed at higher frequency are depicted as a darker red 
colour along the colour gradient, whereas light red coloration represents 

very few observed interactions in the Hi-C data. The gradient units for raw 
matrices (part a) are ‘observed interaction frequency’ and the units for 
HiCNorm, VC and ICE (parts b–d) are ‘normalized interaction frequency’, 

which become increasingly apparent when analysing more-local Hi-C 

contacts (closer to the diagonal). Matrix entries near the matrix diagonal 

represent pairwise interactions between loci that are proximal in linear 

genomic distance (i~j), whereas matrix entries far off the diagonal (i>>j) 
represent pairwise interactions between loci that are very distal in linear 
genomic distance. For whole-chromosome and TAD resolutions, the 
maximal signal intensity was set to the ninety-ninth percentile for the given 
matrix. For the multi-Mb resolution, the maximal intensity was set to the 
ninety-fifth percentile value of the given matrix. Each matrix is a 
symmetrical matrix, NxN, and the chromosome coordinate information is 

given below each matrix in megabases.
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2.4

• TADs are hierarchical, there is no gold standard for TADs selection:

Filippova et al. Algorithms for Molecular Biology 2014 28

TADs calling

For example, Armatus 
algorithm is based on dynamic 
programming and has variable 
parameter, gamma. 



2.4

• A recent comparison of multiple TADs calling tools:

Forcato et al. Nature Methods 201729

TADs calling
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2.4

• Method from Lieberman-Aiden, 2009:

Lieberman-Aiden et al. Nature 200930

Compartments calling

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.

A B

9 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org290
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1 Normalization of interaction matrix by expected interactions:



• Method from 2009:

2.4

Lieberman-Aiden et al. Nature 200931

Compartments calling

2 Calculation of Pearson correlation



2.4

• Eigenvector decomposition:

Lieberman-Aiden et al. Nature 200932

Compartments calling

3 Eigenvector expansion (PCA, principal component analysis)



Forcato et al. Nature Methods 201733

Some tools for basic Hi-C data processing2.5

Language Year

Fit-Hi-C Python 2014

GOTHiC R 2015

HOMER Perl, R 2010

HIPPIE Python, Perl, R 2015

diffHic R, Python 2015

HiCCUPS / Juicer Java 2014, 2016

Juicer Java 2016

TADbit Python 2017

hiclib Python 2012



2.5

• Generally the same processing workflow, except: 

• Stringent amplification duplicates filtering. 

Example elimination of counting the same ligation junction many times 
(Flyamer et al. Nature 2017): if two reads map to the same strand, and each 
side of the read is within 500 bp of any side of the other read, only one 
copy of the read is retained.  

• Iterative correction and normalization are not applicable due to data 
sparsity.

Flyamer et al. Nature 201734

Single-cell data analysis



2.5

• Indirect detection of compartments, TADs and loops due to data sparsity:

Flyamer et al. Nature 201735

Single-cell data analysis



2.5

• Still, TAD-like structures ("contact domains") could be found directly:

Flyamer et al. Nature 201736

Single-cell data analysis



3. From theory to practice:  
workshop overview



• Single-cell and bulk Hi-C raw datasets from Flyamer et al. Nature 2017 
(GEO: GSE80006) 

• Data processing with hiclib (one of the best Hi-C data practices since 2012): 

• Iterative mapping of reads with bowtie2 

• Data filtering 

• Binning 

• Data visualization 

• TADs calling 

• Comparison of single-cell and bulk Hi-C experiments 

• Compartments detection 

• … 

• Powered by:

38

Workshop overview


