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Introduction: Sequencing

�2

Illumina example:



Databases for sequencing data

● GEO 
● SRA 
● ArrayExpress 
● modENCODE 
● ENCODE
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NGS techniques diversity
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Types of epigenetics data

�5 https://encodeproject.org/



Interconnected layers of epigenetics data

�6 Ulianov et al. 2016 Genome Biology
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How do we measure DNA-DNA interactions?



Outline: NGS for DNA-DNA interactions

• Introduction 

• Eukaryotic chromatin structure and methods to study it 

• Chromatin interaction map 

• Interaction map features: TADs, compartments, loops 

• From theory to practice: Hi-C data processing workflow 

• Reads mapping 

• Binning & filtering 

• Matrix balancing 

• TADs and compartments calling 

• Variety of processing tools 

• Some cases from chromatin study practice 

• Seminar overview
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1. Introduction
Chromatin spatial structure



Introduction: Eukaryotic chromatin structure
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Some methods to probe chromatin structure

�10 Bolzer et al., PLoS Biol. 2005



Some methods to probe chromatin structure

● Microscopy 
● FISH (DNA fluorescence in situ hybridization) 
● …

�11 Bolzer et al., PLoS Biol. 2005



Some methods to probe chromatin structure

● Microscopy 
● FISH (DNA fluorescence in situ hybridization) 
● DamID (shows DNA fragments located at the periphery of the nucleus) 
● 3C methods

�12

3C:	Dekker	et	al.,	Science	2002	

and	sequence	



Hi-C: high-throughput chromosomes conformation capture

�13 Lieberman-Aiden et al., Science 2009 

Lieberman-Aiden	et	al.	2009	

Procedure:

Resulting interactions heatmap:



The variety of 3C methods family

�14 Adopted from Schmitt Nature Reviews 2016

Type of probing Assay abbreviation Full assay name Year

1 vs 1 3C Chromosome conformation capture 2002

1 vs Many/All

Multiplexed 3C-seq Multiplexed chromosome conformation capture sequencing 2011
Open-ended 3C Open-ended chromosome conformation capture 2006
4C Chromosome conformation capture-on-chip 2006
ACT Associated chromosome trap 2006
e4C Enhanced chromosome conformation capture-on-chip 2010

3C-DSL Chromosome conformation capture combined with DNA selection 
and ligation 2011

4C-seq Chromosome conformation capture-on-chip combined with high-
throughput sequencing 2011

4C Circular chromosome conformation capture 2012
TLA Targeted locus amplification 2014

Many vs Many
5C Chromosome conformation capture carbon copy 2006
ChIA-PET Chromatin interaction analysis paired-end tag sequencing 2009

Many vs All
Capture-3C Chromosome conformation capture coupled with oligonucleotide 

capture technology 2014

Capture-HiC Hi-C coupled with oligonucleotide capture technology 2014

All vs All 

GCC Genome conformation capture 2009
Hi-C Genome-wide chromosome conformation capture 2009

ELP Genome-wide chromosome conformation capture with enrichment 
of ligation products 2010

TCC Tethered conformation capture 2012
Single-cell Hi-C Single-cell genome-wide chromosome conformation capture 2013

In situ Hi-C Genome-wide chromosome conformation capture with in situ 
ligation 2014

DNase Hi-C Genome-wide chromosome conformation capture with DNase I 
digestion 2015

Micro-C Genome-wide chromosome conformation capture with micrococcal 
nuclease digestion 2015

GAM Genome Architecture Mapping 2017



Chromatin interactions map

�15 Adopted from Imakaev et al. Nature Methods 2012
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, �ij, for every pair of regions, (i,j), can be written  
as �ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as 3i, iwj, jo1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation �ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
putationally intensive machine-learning procedure16. This study 
calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij y BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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Figure 1 | Pipeline for mapping, filtering and 
iterative correction of Hi-C reads. (a) Interacting 
chromatin regions are sequenced and reads are 
mapped to the genome using iterative mapping. 
Only the depicted double-sided (DS) or single-
sided (SS) reads are retained. Blue bars show 
the fraction of DS reads mapped by truncation 
to fixed length; red line shows result of iterative 
mapping. (b,c) Raw and iteratively corrected 
whole-genome (all-by-all) Hi-C maps binned 
at 1-Mb resolution (filtered-out megabases are 
not shown). Coverage profile is the sum of each 
column in the map. Vertical yellow lines show 
chromosome boundaries. Note that after iterative 
correction, the coverage profile is uniform.  
(d) Fractions of SS and DS intrachromosomal 
reads as a function of centromeric distance, 
plotted at 1-Mb resolution for distances up to 
10 Mb from each centromere; lines represent 
mean values and vertical bars represent 25th 
and 75th percentiles. (e) Factorizable biases and 
eigenvectors (E1 and E2) obtained by ICE  
(at 1-Mb resolution). Regions that do not pass 
filters (see Online Methods) or contain no 
mapped reads are shown as gaps. Vertical yellow 
lines show boundaries of chromosomes.
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, �ij, for every pair of regions, (i,j), can be written  
as �ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as 3i, iwj, jo1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation �ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
putationally intensive machine-learning procedure16. This study 
calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij y BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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Figure 1 | Pipeline for mapping, filtering and 
iterative correction of Hi-C reads. (a) Interacting 
chromatin regions are sequenced and reads are 
mapped to the genome using iterative mapping. 
Only the depicted double-sided (DS) or single-
sided (SS) reads are retained. Blue bars show 
the fraction of DS reads mapped by truncation 
to fixed length; red line shows result of iterative 
mapping. (b,c) Raw and iteratively corrected 
whole-genome (all-by-all) Hi-C maps binned 
at 1-Mb resolution (filtered-out megabases are 
not shown). Coverage profile is the sum of each 
column in the map. Vertical yellow lines show 
chromosome boundaries. Note that after iterative 
correction, the coverage profile is uniform.  
(d) Fractions of SS and DS intrachromosomal 
reads as a function of centromeric distance, 
plotted at 1-Mb resolution for distances up to 
10 Mb from each centromere; lines represent 
mean values and vertical bars represent 25th 
and 75th percentiles. (e) Factorizable biases and 
eigenvectors (E1 and E2) obtained by ICE  
(at 1-Mb resolution). Regions that do not pass 
filters (see Online Methods) or contain no 
mapped reads are shown as gaps. Vertical yellow 
lines show boundaries of chromosomes.
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• At the highest-level of spatial organization, trans-interactions are rare. 

• Individual chromosomes occupy distinct territories within the nucleus.

Bonev et al. Nature Reviews 2016�16

Interaction map features: Chromosome territories

Interchromosomal

Map is rotated by 90°, upper triangle visualized



• Chromosomes are further spatially segregated into sub-megabase scale 
domains, or TADs.

Bonev et al. Nature Reviews 2016�17

Topologically-associating domains (TADs)

10 Kb resolution

chr265.5 Mb 73.2 Mb



• TADs have preferential long-range contacts with each other, forming 
two types of compartments, A and B (domains in compartment A 
interact mostly with other type A domains, and vice versa).  

• Two major compartments can be further subdivided into six different 
subcompartments.

Bonev et al. Nature Reviews 2016�18

Chromatin compartments

50 Kb resolution

chr241Mb 79 Mb



• Cis-regulatory elements of vertebrates, such as enhancers, are 
separated by relatively long distances and can be brought into close 
spatial proximity with its target through the formation of chromatin 
loops. 

• There are also other cases of loops (e.g. between co-regulated genes, 
between Polycomb-repressed genes).

Bonev et al. Nature Reviews 2016�19

Chromatin loops

5 Kb resolution

chr271.4 Mb 71.86 Mb



Fraser et al. Microbiology and Molecular Biology Reviews 2015�20

"The Zoo" of chromatin features

tions between chromosomes, even for loci hundreds of megabases
apart on a given chromosome (65, 87, 109). Accordingly, Heride
et al. demonstrated by 3D-FISH that homologous chromosomes
in a diploid cell are far apart from each other (135). Recent work
on haplotype reconstruction using Hi-C data supports these find-
ings by demonstrating that chromosome haplotypes in diploid
cells do not interact frequently with each other (136).

Although chromosomes mostly keep to themselves, they can
considerably interact with other CTs. For instance, contacts be-
tween small, gene-rich chromosomes in Hi-C libraries of human
lymphocytes were shown to occur more frequently than would be
expected based on their size (109). Several loci were shown to loop
out of their chromosome territory, coinciding with both an open
conformation and active expression and suggesting that the space
between chromosome territories might be important (48, 85, 86,
137–141). It is important to note, however, that our understand-
ing of the structure and biology of CTs is derived largely from
FISH experiments using probe sets that do not cover entire chro-

mosomes, and thus, such looping out might sometimes reflect
only extrusion from the visualized regions rather than the actual
CT (142). Nevertheless, comparison of the FISH signals from con-
ventional whole-chromosome “painting” (i.e., hybridization with
fluorescently labeled chromosome-specific probes) to those from
exome painting of the entire chromosome revealed that chroma-
tin segments at the surface of CTs are enriched for exons, residing
largely away from the more compact CT core, which is consistent
with looping out (39). Several groups demonstrated a significant
amount of intermingling between different chromosome territo-
ries on a cell-specific basis (64, 143, 144), although the extent of
these contacts remains an open question. Similarly, interchromo-
somal contacts between a select set of highly transcribed regions
were captured by TCC, and it was suggested that access to the
transcription machinery, possibly within transcription factories,
can drive the formation of contacts (121). Other studies using
genome-wide Hi-C data from mouse and human show that phys-
ical proximity prior to chromosomal rearrangement correlates

FIG 3 Chromatin organization across genomic scales. The chromatin fiber from one chromosome is unraveled to illustrate four different organization levels
described previously in the text. Chromatin conformations are presented from low (top) to high (bottom) resolutions. The chromatin fiber and corresponding
chromosome territory are shown in pink. A and B compartments (multimegabase scale) are shown separately to highlight their inherently distinct nature,
although there is no evidence that their conformations differ at the level of TADs (megabase scale). Three examples of chromatin looping (submegabase scale)
are shown: (i) enhancer-promoter, (ii) enhancer-silencer, and (iii) insulator-insulator. E, enhancer; P, promoter; S, silencer; I, insulator.

Fraser et al.
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Why is it important? 

�21 Krijger, Nature, 2016



2. From theory to practice: 
Hi-C processing workflow



1. Reads mapping: paired-end mode is not used, iterative mapping. 

2. Filtering & binning 

• Fragment assignment: the mapped read is assigned according to its 5' 
mapped position, mapped read positions should fall close to a 
restriction site 

• Fragment filtering: multiple mapping, PCR duplicates, undigested 
restriction sites 

• Binning 

• Bin level filtering: remove 1% low signal rows/columns 

3. Balancing: correction for technical biases 

4. Features calling (TADs, compartments, loops, etc.)

�23

Hi-C processing workflow



• Iterative or split reads mapping is required.

Adopted from Lajoie et al., The Hitchhiker's guide to Hi-C analysis: Practical guidelines.  
Methods 2015�24

Reads mapping

5.1.1. Read mapping – iterative mapping strategy
The Hi-C method creates ligation junctions of varying sizes

(Fig. 2a). The molecules are then sheared to the desired size range
(normally 100–300 bp). Hi-C interactions are simply chimeric liga-
tion products, formed of two distinct genomic fragments. One can
thus sequence the ends of the molecule to identify the two pairs in
the ligation product most efficiently. However, one could also read
the molecule in its entirety and then computationally identify the
two distinct genomic fragments, though the exact position of the
ligation site is unknown.

Searching for the ligation junction is possible, but the junction
site is not guaranteed to be covered with short reads. For example,
given a 300 bp Hi-C ligation product where the junction site is
located at position 150 (in the center) of the molecule, if one were
to perform a traditional 50 base-pair paired end sequencing, only
the 50 base-pairs on each end would be sequenced. The 200 inter-
nal base-pairs of this molecule would not be sequenced, even
though one could still correctly identify each of the interaction
pairs. It would be impossible to first search for the junction site
and then split the reads into two, since the junction site is not
measured. Instead we favor an iterative mapping approach to
solve this problem [27] (Fig. 2b). The idea is to attempt to
uniquely map the start of the read without including the junction
site. Reads are first truncated to 25 bp starting at the 50 end and
mapped to the genome. Reads that do not uniquely map to the
genome are extended by an additional 5 bp and then re-mapped.
This process is repeated until either all reads uniquely map or
until the read is extended to its entirety. Only paired end reads
in which each side can be uniquely aligned are kept. All other
paired end reads are discarded. We propose that in the future,
dedicated 3C/Hi-C mapping algorithms could be used in order to
streamline the mapping process.

5.2. Fragment assignment

For each mapped read, the genomic alignment location is
assigned to one of the restriction fragments, since they can be cal-
culated in advance from the genome sequence. The mapped read is
assigned according to its 50 mapped position. Mapped read posi-

tions should fall close to a restriction site (where ‘‘close’’ is define
by the molecule size distribution), and no further than the maxi-
mal molecule length away. Given a normal Hi-C experiment, which
is sheared to 100–300 bp, the location of the ligation junction
within each molecule should be normally distributed around the
center of the molecule. The mapped reads locations relative to
the ligation site should then follow this normal distribution. Reads
that align more than the maximal molecule length away from the
closest restriction enzyme are the result of either non-canonical
enzyme activity or non-enzymatic physical breakage of the chro-
matin. It has been shown that these reads produce informative
Hi-C interactions, and thus are not discriminated against [27]. Once
each read has been assigned to a restriction fragment, filtering
must be applied to discard any technical noise in the dataset.

Hi-C Processing Flow Chart

Read Mapping

Fragment Assignment

Fragment Filter

Binning

Bin Filter

Balancing

Iterative Mapping

Self-Fragment Filter

PCR Dupe Filter

Strand Filters

Analysis and Interpretation
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Fig. 1. Flow chart for processing Hi-C data.
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Fig. 2. Mapping and filtering. (a) Following the Hi-C method, fragments are ligated.
Hi-C junctions are then sheared and sequenced. Hi-C junctions can be sequenced by
using either paired-end sequencing or single-end sequencing. ⁄Here a Hi-C junction
is incapable of being sequenced by a 100 bp single end run, as the read does not
extend past the junction into the second fragment. Should the read length increase,
then the sequenced read would cross the junction. ⁄⁄Here we highlight the fact that
same stranded paired reads could be the result of undigested chromatin, and thus
would not represent an actual Hi-C interaction. (b) Iterative mapping approach for
aligning paired-end Hi-C reads. In gray, from top to bottom above/below each read,
the mapping iterations are shown as the read is extended and re-mapped. Iterative
mapping concludes when either the read is uniquely aligned, or the maximal read
length is reached. The number of iterations is a factor of mappability and the
location of the junction. (c) After mapping, the paired reads can either map to a
single fragment, or to different fragments. Reads mapping to a single fragment are
considered uninformative. Self-ligations and un-ligated fragments are classified by
the read strand. Inward pointing reads are considered un-ligated fragments
(‘‘dangling ends’’). Outward pointing reads are classified as self-ligated fragments
(‘‘self-circles’’) as they form circular products. Same-strand reads are classified as
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assemble the Hi-C dataset. All strand combinations are possible and are expected to
be observed in equal proportions (25% per combination). However, inward and
outward pairs could be the result of un-digested restriction sites, and then
processed as either self-ligated or un-ligated products. Imbalance in the relative
proportions of the strand combinations, could suggest the need for additional
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B.R. Lajoie et al. / Methods xxx (2014) xxx–xxx 3

Please cite this article in press as: B.R. Lajoie et al., Methods (2014), http://dx.doi.org/10.1016/j.ymeth.2014.10.031

} Mapping iterations

Forward read
Reverse read

Possible valid Hi-C products:



• Possible Hi-C mapping results:

Imakaev et al. Nature Methods 2012�25

Filtering at the level of fragments



• Hi-C restriction fragments are assigned to bins (sequential same size 
genomic windows) and aggregated by taking the sum:

�26
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• Balancing is the procedure of correction of systematic technical bias in 
data.  

• Major balancing methods and two general types of balancing:

Adopted from Schmitt et al. Nature Reviews 2016�27

Matrix balancing

Approach Type Model assumption Implementation Computational 
speed

Yaffe and Tanay

Explicit

Restriction enzyme 
fragment lengths, GC 
content and sequence 
mappability are three major 
systematic biases in Hi-C

Perl and R Slow

HiCNorm R Fast

Iterative 
correction (ICE)

Implicit
All the bias is captured by 
the sequencing coverage of 
each bin, equal visibility

Python Fast

Knight and Ruiz JAVA Fast

HiC-Pro Python and R Very fast



Schmitt et al. Nature Reviews 2016�28

Matrix balancing

Nature Reviews | Molecular Cell Biology
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Figure 2 | Comparison of computational methods to account for bias in 
Hi-C data. We reprocessed high-resolution Hi-C data from IMR90 cells19 
uniformly until the bias-removal step, at which point either raw contact 
matrices were generated or normalization was conducted with one of 
three methods. Here, we illustrate a semi-quantitative comparison  
of human chromosome 7 (chr7) for 3 genomic resolutions (whole 
chromo some, a multi-megabase (multi-Mb) locus and a topologically 
associating domain (TAD)) at 40 kb bin size for a raw Hi-C contact matrix 
(part a), an explicit model of bias removal (HiCNorm) (part b), and two 
methods of matrix-balancing algorithms for bias removal, namely a fast, 
rough, single-iteration balancing method, vanilla coverage (VC) (part c) and 
iterative correction and eigenvector decomposition (ICE) (part d). It can be 
visually appreciated that the explicit or implicit assumptions made by each 
method to account for biases result in quantitative differences in the 
normalized interaction frequency between loci. The intensity gradient is a 
linear increase from zero to the maximum noted (units are observed read 
counts for the raw matrices, and normalized read counts for the normalized 
matrix columns). Depicted are a series of symmetrical Hi-C contact 
matrices at various genomic resolutions. The rows (i) and columns (j) 

of each matrix represent bins along a chromosome, in this case various 
regions of human chr7. Each matrix entry [i,j] represents the observed or 
normalized interaction frequency between a pair of genomic loci. Pairwise 
interactions observed at higher frequency are depicted as a darker red 
colour along the colour gradient, whereas light red coloration represents 
very few observed interactions in the Hi-C data. The gradient units for raw 
matrices (part a) are ‘observed interaction frequency’ and the units for 
HiCNorm, VC and ICE (parts b–d) are ‘normalized interaction frequency’, 
which become increasingly apparent when analysing more-local Hi-C 
contacts (closer to the diagonal). Matrix entries near the matrix diagonal 
represent pairwise interactions between loci that are proximal in linear 
genomic distance (i~j), whereas matrix entries far off the diagonal (i>>j) 
represent pairwise interactions between loci that are very distal in linear 
genomic distance. For whole-chromosome and TAD resolutions, the 
maximal signal intensity was set to the ninety-ninth percentile for the given 
matrix. For the multi-Mb resolution, the maximal intensity was set to the 
ninety-fifth percentile value of the given matrix. Each matrix is a 
symmetrical matrix, NxN, and the chromosome coordinate information is 
given below each matrix in megabases.
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Iterative correction
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, �ij, for every pair of regions, (i,j), can be written  
as �ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as 3i, iwj, jo1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation �ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
putationally intensive machine-learning procedure16. This study 
calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij y BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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Figure 1 | Pipeline for mapping, filtering and 
iterative correction of Hi-C reads. (a) Interacting 
chromatin regions are sequenced and reads are 
mapped to the genome using iterative mapping. 
Only the depicted double-sided (DS) or single-
sided (SS) reads are retained. Blue bars show 
the fraction of DS reads mapped by truncation 
to fixed length; red line shows result of iterative 
mapping. (b,c) Raw and iteratively corrected 
whole-genome (all-by-all) Hi-C maps binned 
at 1-Mb resolution (filtered-out megabases are 
not shown). Coverage profile is the sum of each 
column in the map. Vertical yellow lines show 
chromosome boundaries. Note that after iterative 
correction, the coverage profile is uniform.  
(d) Fractions of SS and DS intrachromosomal 
reads as a function of centromeric distance, 
plotted at 1-Mb resolution for distances up to 
10 Mb from each centromere; lines represent 
mean values and vertical bars represent 25th 
and 75th percentiles. (e) Factorizable biases and 
eigenvectors (E1 and E2) obtained by ICE  
(at 1-Mb resolution). Regions that do not pass 
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• TADs are hierarchical, there is no gold standard for TADs selection:

Filippova et al. Algorithms for Molecular Biology 2014 �30

TADs calling
Filippova et al. Algorithms for Molecular Biology 2014, 9:14 Page 2 of 11
http://www.almob.org/content/9/1/14
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IMR90 Fibroblast, Chromosome 1

Figure 1 Interaction matrix for a portion of human chromosome 1 from a recent Hi-C experiment by Dixon et al. [5]. Each axis represents a
location on the chromosome with a step of 40kbp. Densely interacting domains identified by the method of Dixon et al. are shown in red.
Alternative domains are shown as dotted black lines on the upper triangular portion of the matrix. Visual inspection of the lower triangular portion
suggests domains could be completely nested within another and highly overlapping when compared to Dixon et al.’s domains. This motivates the
problem of identifying alternative domains across length scales.

We introduce a new algorithm to efficiently identify
topological domains in 3C interaction matrices for a given
domain-length scaling factor γ . Our formulation of this
problem as a dynamic program allows for an efficient
traversal of the solution space to obtain alternative opti-
mal and near-optimal domain sets. Our results suggest
that there exist a handful of characteristic resolutions
across which domains are similar. Based on this find-
ing, we identify a consensus set of domains that persists
across various resolutions. We find that domains discov-
ered by our algorithm are dense and cover interactions
of higher frequency than inter-domain interactions. Addi-
tionally, we show that inter-domain regions within the
consensus domain set are highly enriched with insulator
factor CTCF and histone modification marks. We analyze
a set of domains from multiple optimal domain sets across
scales and establish that the organization of domains is
highly hierarchical, suggesting that the generated domains
can be used as the basis for understanding the hierar-
chical organization of the genome and its role in gene
regulation. We argue that our straightforward approach
retains the essence of the more complex multi-parameter
HMM introduced in [5] while allowing for the flexibility to
identify biologically relevant domain structures at various
scales.

Problem definitions
Given the resolution of the 3C experiment (say, 40kbp),
the chromosome is broken into n evenly sized fragments.
3C contact maps record interactions between different
sections of the chromosome in the form of a weighted
adjacency matrix A where two fragments i and j interact
with frequency Aij.

Problem 1 (Resolution-specific domains). Given a n×n
weighted adjacency matrix A and a resolution parameter
γ ≥ 0, we wish to identify a set of domains Dγ where
each domain is represented as an interval di = [ai, bi],
1 ≤ ai < bi ≤ n such that no two di and dj overlap
for any i ̸= j. Additionally, each domain should have a
larger interaction frequency within the domain than to its
surrounding regions.

Specifically, we seek to identify a set of non-overlapping
domains Dγ that optimizes the following objective:

max
∑

[ai,bi]∈Dγ

q(ai, bi, γ ), (1)

where Dγ chosen from the set of all possible domains,
and q is a function that quantifies the quality of a domain
[ ai, bi] at resolution γ . Here, the parameter γ is inversely
related to the average domain size in Dγ : lower γ results

Armatus is a program predicting TADs 
using Hi-C contact matrices as an 
input. 

Armatus can produce several TAD 
annotations with different average 
TAD sizes. 

Hierarchical structure of TADs: large 
TADs can be split into smaller ones. 
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biological replicates. At all resolutions, HiCseg20 had the high-
est reproducibility among replicates of the same data set (intra-
data set; Fig. 3d and Supplementary Fig. 9a). In the majority of 
comparisons, the reproducibility of TAD boundaries was higher 
(median JI of 0.25) than what was observed for chromatin interac-
tions. The reproducibility increased with the number of reads for 
all methods when grouping samples based on increasing number 

of reads (Supplementary Fig. 9b). TADs identified by HiCseg20 
were also the most reproducible when using the overlap coef-
ficient (Supplementary Fig. 9c).

The intra-data set reproducibility remained similar for most 
tools when using different restriction enzymes for the same cell 
line (Supplementary Fig. 10). However, the inter-data set con-
cordance (i.e., between TAD boundaries called in replicates of the 
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Figure 3 | Comparative results of methods for the identification of TADs. (a) Scatter plot of total number of TADs called by each method as a function of 
the number of reads retained by the filtering step in all data sets except Lieberman-Aiden et al.2 and Jin et al.8 H1-hESC (n = 36; Supplementary Table 1). 
Different points represent sample replicates. Loess interpolation for each method is shown as solid line. (b) Box plot of median TAD size in all replicates of 
all data sets (analyzed at 40-kb resolution) except Lieberman-Aiden et al.2 and Jin et al.8 H1-hESC (n = 36). (c) Heat map of the contact matrix of Rao et al.9  
GM12878 replicate H (chr1:153,000,000–155,500,000) at 40-kb resolution. Identified TADs are framed in different colors for the various methods. Obs, 
observed counts. (d) Box plots of the Jaccard Index for concordance of TAD boundaries between sample replicates of all data sets with at least two 
replicates (n = 39).

• A recent comparison of multiple TADs calling tools:

Forcato et al. Nature Methods 2017�31

TADs calling
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biological replicates. At all resolutions, HiCseg20 had the high-
est reproducibility among replicates of the same data set (intra-
data set; Fig. 3d and Supplementary Fig. 9a). In the majority of 
comparisons, the reproducibility of TAD boundaries was higher 
(median JI of 0.25) than what was observed for chromatin interac-
tions. The reproducibility increased with the number of reads for 
all methods when grouping samples based on increasing number 

of reads (Supplementary Fig. 9b). TADs identified by HiCseg20 
were also the most reproducible when using the overlap coef-
ficient (Supplementary Fig. 9c).

The intra-data set reproducibility remained similar for most 
tools when using different restriction enzymes for the same cell 
line (Supplementary Fig. 10). However, the inter-data set con-
cordance (i.e., between TAD boundaries called in replicates of the 
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Figure 3 | Comparative results of methods for the identification of TADs. (a) Scatter plot of total number of TADs called by each method as a function of 
the number of reads retained by the filtering step in all data sets except Lieberman-Aiden et al.2 and Jin et al.8 H1-hESC (n = 36; Supplementary Table 1). 
Different points represent sample replicates. Loess interpolation for each method is shown as solid line. (b) Box plot of median TAD size in all replicates of 
all data sets (analyzed at 40-kb resolution) except Lieberman-Aiden et al.2 and Jin et al.8 H1-hESC (n = 36). (c) Heat map of the contact matrix of Rao et al.9  
GM12878 replicate H (chr1:153,000,000–155,500,000) at 40-kb resolution. Identified TADs are framed in different colors for the various methods. Obs, 
observed counts. (d) Box plots of the Jaccard Index for concordance of TAD boundaries between sample replicates of all data sets with at least two 
replicates (n = 39).
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biological replicates. At all resolutions, HiCseg20 had the high-
est reproducibility among replicates of the same data set (intra-
data set; Fig. 3d and Supplementary Fig. 9a). In the majority of 
comparisons, the reproducibility of TAD boundaries was higher 
(median JI of 0.25) than what was observed for chromatin interac-
tions. The reproducibility increased with the number of reads for 
all methods when grouping samples based on increasing number 

of reads (Supplementary Fig. 9b). TADs identified by HiCseg20 
were also the most reproducible when using the overlap coef-
ficient (Supplementary Fig. 9c).

The intra-data set reproducibility remained similar for most 
tools when using different restriction enzymes for the same cell 
line (Supplementary Fig. 10). However, the inter-data set con-
cordance (i.e., between TAD boundaries called in replicates of the 
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Figure 3 | Comparative results of methods for the identification of TADs. (a) Scatter plot of total number of TADs called by each method as a function of 
the number of reads retained by the filtering step in all data sets except Lieberman-Aiden et al.2 and Jin et al.8 H1-hESC (n = 36; Supplementary Table 1). 
Different points represent sample replicates. Loess interpolation for each method is shown as solid line. (b) Box plot of median TAD size in all replicates of 
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• Insulation score is intuitively easy way to calculate TAD boundaries: 

1. Calculates insulation score (IS) for each bin: 

2. Find local minima in IS profile

Based on Crane, 2015�32

TADs calling

Hi-C карта взаимодействий 
для одного из контрольных 
экспериментов

IS для параметров (40, 100)

ChIP-Seq деплеция HDAC1

ChIP-Seq обработка TSA

ChIP-Seq обработка 
куркумином

ChIP-Seq контроль
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b
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d
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• Method from Lieberman-Aiden, 2009:

Lieberman-Aiden et al. Nature 2009�33

Compartments calling

in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
some were consistent across chromosomes: the

labels (A and B) could be assigned on each
chromosome so that sets on different chromo-
somes carrying the same label had correlated
contact profiles, and those carrying different labels
had anticorrelated contact profiles (Fig. 3D). These
results imply that the entire genome can be par-
titioned into two spatial compartments such that
greater interaction occurswithin each compartment
rather than across compartments.

TheHi-C data imply that regions tend be closer
in space if they belong to the same compartment
(Aversus B) than if they do not. We tested this by

using 3D-FISH to probe four loci (L1, L2, L3, and
L4) on chromosome 14 that alternate between the
two compartments (L1 and L3 in compartment A;
L2 and L4 in compartment B) (Fig. 3, E and F).
3D-FISH showed that L3 tends to be closer to
L1 than to L2, despite the fact that L2 lies be-
tween L1 and L3 in the linear genome sequence
(Fig. 3E). Similarly, we found that L2 is closer to
L4 than to L3 (Fig. 3F). Comparable results were
obtained for four consecutive loci on chromosome
22 (fig. S2, A and B). Taken together, these obser-
vations confirm the spatial compartmentalization

A B C D

E F G H

Fig. 3. The nucleus is segregated into two compartments corresponding
to open and closed chromatin. (A) Map of chromosome 14 at a resolution
of 1 Mb exhibits substructure in the form of an intense diagonal and a
constellation of large blocks (three experiments combined; range from 0
to 200 reads). Tick marks appear every 10 Mb. (B) The observed/expected
matrix shows loci with either more (red) or less (blue) interactions than
would be expected, given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix illustrates the correlation [range from – (blue) to
+1 (red)] between the intrachromosomal interaction profiles of every pair
of 1-Mb loci along chromosome 14. The plaid pattern indicates the
presence of two compartments within the chromosome. (D) Interchromo-
somal correlation map for chromosome 14 and chromosome 20 [range
from –0.25 (blue) to 0.25 (red)]. The unalignable region around the cen-
tromere of chromosome 20 is indicated in gray. Each compartment on
chromosome 14 has a counterpart on chromosome 20 with a very similar

genome-wide interaction pattern. (E and F) We designed probes for four
loci (L1, L2, L3, and L4) that lie consecutively along chromosome 14 but
alternate between the two compartments [L1 and L3 in (compartment A);
L2 and L4 in (compartment B)]. (E) L3 (blue) was consistently closer to L1
(green) than to L2 (red), despite the fact that L2 lies between L1 and L3
in the primary sequence of the genome. This was confirmed visually and
by plotting the cumulative distribution. (F) L2 (green) was consistently
closer to L4 (red) than to L3 (blue). (G) Correlation map of chromosome
14 at a resolution of 100 kb. The PC (eigenvector) correlates with the
distribution of genes and with features of open chromatin. (H) A 31-Mb
window from chromosome 14 is shown; the indicated region (yellow
dashes) alternates between the open and the closed compartments in
GM06990 (top, eigenvector and heatmap) but is predominantly open in
K562 (bottom, eigenvector and heatmap). The change in compartmen-
talization corresponds to a shift in chromatin state (DNAseI).
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.

A B
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1 Normalization of interaction matrix by expected interactions:



• Method from 2009:

Lieberman-Aiden et al. Nature 2009�34

Compartments calling

in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
some were consistent across chromosomes: the

labels (A and B) could be assigned on each
chromosome so that sets on different chromo-
somes carrying the same label had correlated
contact profiles, and those carrying different labels
had anticorrelated contact profiles (Fig. 3D). These
results imply that the entire genome can be par-
titioned into two spatial compartments such that
greater interaction occurswithin each compartment
rather than across compartments.

TheHi-C data imply that regions tend be closer
in space if they belong to the same compartment
(Aversus B) than if they do not. We tested this by

using 3D-FISH to probe four loci (L1, L2, L3, and
L4) on chromosome 14 that alternate between the
two compartments (L1 and L3 in compartment A;
L2 and L4 in compartment B) (Fig. 3, E and F).
3D-FISH showed that L3 tends to be closer to
L1 than to L2, despite the fact that L2 lies be-
tween L1 and L3 in the linear genome sequence
(Fig. 3E). Similarly, we found that L2 is closer to
L4 than to L3 (Fig. 3F). Comparable results were
obtained for four consecutive loci on chromosome
22 (fig. S2, A and B). Taken together, these obser-
vations confirm the spatial compartmentalization

A B C D

E F G H

Fig. 3. The nucleus is segregated into two compartments corresponding
to open and closed chromatin. (A) Map of chromosome 14 at a resolution
of 1 Mb exhibits substructure in the form of an intense diagonal and a
constellation of large blocks (three experiments combined; range from 0
to 200 reads). Tick marks appear every 10 Mb. (B) The observed/expected
matrix shows loci with either more (red) or less (blue) interactions than
would be expected, given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix illustrates the correlation [range from – (blue) to
+1 (red)] between the intrachromosomal interaction profiles of every pair
of 1-Mb loci along chromosome 14. The plaid pattern indicates the
presence of two compartments within the chromosome. (D) Interchromo-
somal correlation map for chromosome 14 and chromosome 20 [range
from –0.25 (blue) to 0.25 (red)]. The unalignable region around the cen-
tromere of chromosome 20 is indicated in gray. Each compartment on
chromosome 14 has a counterpart on chromosome 20 with a very similar

genome-wide interaction pattern. (E and F) We designed probes for four
loci (L1, L2, L3, and L4) that lie consecutively along chromosome 14 but
alternate between the two compartments [L1 and L3 in (compartment A);
L2 and L4 in (compartment B)]. (E) L3 (blue) was consistently closer to L1
(green) than to L2 (red), despite the fact that L2 lies between L1 and L3
in the primary sequence of the genome. This was confirmed visually and
by plotting the cumulative distribution. (F) L2 (green) was consistently
closer to L4 (red) than to L3 (blue). (G) Correlation map of chromosome
14 at a resolution of 100 kb. The PC (eigenvector) correlates with the
distribution of genes and with features of open chromatin. (H) A 31-Mb
window from chromosome 14 is shown; the indicated region (yellow
dashes) alternates between the open and the closed compartments in
GM06990 (top, eigenvector and heatmap) but is predominantly open in
K562 (bottom, eigenvector and heatmap). The change in compartmen-
talization corresponds to a shift in chromatin state (DNAseI).
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2 Calculation of Pearson correlation



• Eigenvector decomposition:

Lieberman-Aiden et al. Nature 2009�35

Compartments calling

3 Eigenvector expansion (PCA, principal component analysis)



Chromatin modelling

�36 Lieberman-Aiden et al. 2009  



Variety of Hi-C processing tools

�37 from Lazaris 2017 BMC Genomics, modified

…….



3. Some cases from chromatin study 
practice



Comparison of cell lines

�39 Ulyanov, 2016, Genome Research

For example, we can compare chromatin properties in different cells and associate them 
with gene activity:



"Time series"

● For example, upon induction of pluripotency we can observe amazing 
topological transitions of chromatin: 

�40 Stadhouders, Nature Genetics, 2018



"Time series"

�41 Stadhouders, Nature Genetics, 2018

● Or we can observe how interactions of factors emerge:



● Conventional genome assembly: 

● Incorporation of Hi-C data:

Genome de novo assembly with Hi-C

�42 Kaplan & Dekker, Nature Letters, 2013



Genome de novo assembly with Hi-C

�43 Dudchenko, Science, 2017

Aedes aegypti (the yellow fever mosquito)



Single-cell Hi-C

�44 Flyamer et al. Nature 2017



Single-cell Hi-C

�45
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data provides insights into the organization of pluripotency factor- and 
nucleosome remodelling deacetylase (NuRD)-regulated genes.

Intact genome structures from single-cell Hi-C data
We imaged haploid mouse ES cell nuclei, expressing fluorescently 
tagged CENP-A (the centromeric histone H3 variant) and histone H2B 
proteins, to select G1-phase cells (Extended Data Fig. 1a) and later val-
idate the structures. Hi-C processing of eight individual mouse ES cells 
yielded 37,000–122,000 contacts (Extended Data Table 1), representing 
1.2–4.1% recovery of the total possible ligation junctions. In single cells, 
unlike in population data, Hi-C contacts are observed between distinct 
and different sets of chromosomes (Fig. 1b and Extended Data Fig. 1b).

Using a particle-on-a-string representation and an extended simu-
lated annealing protocol, we calculated highly consistent 3D genome 
structures (ensemble root mean square deviation (r.m.s.d.) <  1.75 
particle radii) with discrete chromosome territories (Fig. 1c and 
Supplementary Videos 1, 2). The structures were calculated with an 
average of 1–3 Hi-C contact-derived restraints for each 100-kb particle  
(with a total of 26,000–75,000 restraints; Extended Data Table 2 
and Extended Data Fig. 1c). Recalculation after randomly omitting 
10–70% of the data reliably generated the same folded conformation 
(r.m.s.d. <  2.5 particle radii). Moreover, structure calculations after 

randomly merging half of the data from two different cells resulted in 
a vast increase in the number of violated experimental restraints (37.4% 
have a distance of more than 4 particle radii, compared with 5–6% for 
the separate data), and generated compacted, highly inconsistent struc-
tures (Extended Data Fig. 1d). Thus, single-cell Hi-C datasets cannot 
result from independent sampling of contacts from a single underlying  
conformation. In addition, cells with either a broken/recombined 
chromosome (Extended Data Fig. 1e) or a duplicated chromosome 
(Extended Data Fig. 1f) can be immediately recognized from the data.

Structure validation and contact coverage
A consistent Rabl configuration (with centromeres and telomeres clus-
tered on opposite sides of the nucleus) was observed in all G1-phase 
ES cells, strongly validating the structures (Fig. 2a, Extended Data 
Fig. 2a and Supplementary Video 3). Figure 2b shows two examples 
of CENP-A image superposition with the corresponding genome 
structure from the same cell, providing independent evaluation of the 
reliability of the structures. Cell 7 shows typical clustering of the peri-
centromeric regions in a cavity on one side of the structure, which is 
clearly supported by the centromere positions in the CENP-A image. In 
cell 8, the centromeres are more diffusely distributed in both the image 
and the structure. The structures were also validated by comparison 
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Figure 2 | Large-scale structure of the genome. a, Five superimposed 
structures from a single cell in three different orientations, with the 
chromosomes coloured from red to purple (centromere to telomere). 
b, Superposition of two single-cell structures with images of mEos3.2-
tagged CENP-A recorded from the same single cells. The centromeres 
from the images are shown as yellow spheres and the centromeric ends 
of the chromosomes are coloured red. The same structures after rotation 
by 90° are shown below. c, 3D structure of a haploid mouse ES genome 
with expanded views of the separate chromosome territories (left), and 
the spatial distribution of the A (blue) and B (red) compartments (right). 
d, Structure of chromosome 9 from two different cells coloured from 
red to purple (centromere to telomere) (left), or according to whether 

the sequence is found in either the A (blue) or the B (red) compartments 
(right). e, Cross-sections through five superimposed 3D structures from 
two different cells, coloured according to: whether the sequence is in the A 
or B compartment (left); whether the sequence is part of a cLAD (yellow) 
or contains highly expressed genes (blue) (centre); and chromosome 
identity (right). f, Structures of selected chromosomes from a single cell 
illustrating the different ways chromosomes can contribute to the A and B 
compartments. g, Chromosome 3 from a single cell with the positions of 
highly expressed genes shown as blue circles (larger circles indicate higher 
expression) and lamina-associated regions shown in yellow (left), and in 
which the sequence is coloured according to whether it is in the A or B 
compartment (right).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Data modelling based on single-cell can be very powerful, it can 
reproduce results visible previously by microscopy:

Stevens et al. Nature 2017



4. From theory to practice:  
EpiPractice1
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Why you should not study low-level Hi-C data processing?

Forcato et al. Nature Methods 2017

Language Year

Fit-Hi-C Python 2014

GOTHiC R 2015

HOMER Perl, R 2010

HIPPIE Python, Perl, R 2015

diffHic R, Python 2015

HiCCUPS / Juicer Java 2014, 2016

Juicer Java 2016

TADbit Python 2017

hiclib Python 2012

• Easy to use ready-made Hi-C maps and browsers Hi-C (GEO, ENCODE, 
4dnucleome). 

• Lots of methods for Hi-C data processing, no golden standard. Example of 
existing toolkits: 

• Constantly appearing new methods, written for one particular paper 

• Sometimes it's easier to write your own processing pipeline…



Some useful links

�48

4D Nucleome + 
Mirny lab

Lieberman-Aiden 
lab

Other labs

Hubs of recent 
updates

www.4dnucleome.org www.aidenlab.org

Data browsers

higlass.io 
data.4dnucleome.org Juicebox

Promoter Yue lab 
browser

Data repos Aiden lab datasets
ENCODE 3D-

datasets

Online 
processing 

services

HiCExplorer on 
Galaxy 

CLI/API 
processing 

tools

cooler docs 
cooler ipynb tutorial

Juicer HiCExplorer 

https://www.4dnucleome.org/
https://www.aidenlab.org/
http://higlass.io/
https://data.4dnucleome.org/
http://www.aidenlab.org/juicebox
http://promoter.bx.psu.edu/hi-c/view.php
https://www.aidenlab.org/data.html
https://www.encodeproject.org/matrix/?type=Experiment&status=released&assay_slims=3D+chromatin+structure
https://hicexplorer.usegalaxy.eu
https://cooler.readthedocs.io/en/latest/
https://github.com/hms-dbmi/hic-data-analysis-bootcamp
https://github.com/aidenlab/juicer/wiki
https://hicexplorer.readthedocs.io/en/latest/


Practice outline
Two parts: 
1. Hi-C data interpretation & Browsers comparison (10 pts) 

1. Yue lab Hi-C browser 
2. HiGlass 
3. Juicer 

2. Hi-C data manipulation & Command line tools (10 pts) 
1. Setting up environment 
2. Hi-C data processing with CLI 

1. Data processing 
2. Data visualisation & TAD calling 
3. Data association  

This is our seminar and home task (10 pts max per each part). 
Send the reports in free form(doc or pdf with images) to Aleksandra.Galitsyna@skoltech.ru with 
subject:  
" SK EpiPractice1 <Your name and surname>"  
until 9th of April 23:00.  
 
Each task has necessary sections (a, b, c, …) and additional (d*, …). You can get up to 20 points per 
this hometask. Optional tasks bring extra points that might compensate for incomplete or 
erroneous tasks 

Task solutions for practices 1 and 2 will be presented at 10th of April, thus there is no 
homework evaluation after 11:00 AM at 10th of April (in case if you miss the deadline)
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mailto:Aleksandra.Galitsyna@skoltech.ru


• Go to "Promoter" browser from Yue lab (http://promoter.bx.psu.edu/hi-
c/view.php) 

• Select cell line K562 for genome assembly hg19, unbalanced Hi-C maps 
(raw), with 5 Kb resolution.  

• Select the surroundings of HBA1 gene for view. 

• Take a look a genes annotation. Where the gene HBA1 is situated 
corresponding to TADs (in a TAD, at the boundary)? Report the 
screenshot and explanation. (а) 

�50

Task 1. Yue lab browser 

http://promoter.bx.psu.edu/hi-c/view.php
http://promoter.bx.psu.edu/hi-c/view.php


Task 1. Yue lab browser 

�51

promoter.bx.psu.edu/hi-c/view.php 

http://promoter.bx.psu.edu/hi-c/view.php


Task 1. Yue lab browser 

�52

• Load the dataset for the same cells (K562, Hi-C) with VC-correction. Has 
the map changed? Report the difference, demonstrate the TAD close 
to HBA1 gene and send the picture. (b)  

• Take a look at DHS - DNase I hypersensitive sites, site of accessible 
chromatin. Are there many DHS close to HBA1? Report and propose 
an explanation. (c) 

• HBA1 - is a globin gene involved in oxygen transport. K562 is a 
erythroleukemia-derived cell type. Can you propose a biological 
explanation of observed HBA1 state? Would you expect the same 
effect in other cell lines? Provide your answer with proof. (d*)



• Go to another Hi-C browser HiGlass: http://higlass.io/ 

• Go to "Two Linked Views" and adjust the view: human hg19 genome, 
position chr8:107,328,268-109,258,572 & chr8:107,461,673-109,232,887 
[offset 0,0:0,0], comparison between GM12878 and K562.  

• Describe the difference between these two cell lines, loops, TADs or 
compartments. (a) 

• Change the heatmap properties. Find the colouring pattern that 
makes both datasets look qualitatively the same. Send the 
screenshot. (b) 

• Is the quality of the datasets the same? Describe the difference and 
possible qualitative effect of that. (с) 
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Task 2. Comparison of Hi-C in HiGlass

http://higlass.io/


• Use the manual here: https://hms-dbmi.github.io/hic-data-analysis-
bootcamp/#45 (slides 45-57) and adjust the view:  
hg19 genome 
central window Wutz2017.HeLa.Control_ProM_sync  
right window Wutz2017.HeLa.Control_G1_sync.  
 
Use the following options: Zoom limit 16 K, ICE 
 
This is the dataset for synchronised cells on mitosis and G1 phase. Send 
the screenshot with description of differences. Propose biological 
explanation of the effect. (d*) 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Task 2. hi-C comparison in HiGlass

https://hms-dbmi.github.io/hic-data-analysis-bootcamp/#45
https://hms-dbmi.github.io/hic-data-analysis-bootcamp/#45


• Go to online version of Juicebox from Aiden lab: http://
www.aidenlab.org/juicebox 
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Task 3. Loops, TADs and CTCF

http://www.aidenlab.org/juicebox
http://www.aidenlab.org/juicebox


• Load Hi-C (!) for the same cells K562, se the resolution to 10 Kb, select the 
approptiate color scale (so that you can see TADs and loops). Select 
Balanced correction of the map. Send a screenshot of some region with 
marked loops and TADs. Describe your observations. (a) 

• Load the TADs and loops annotation (Load tracks -> 2D Annotations -> 
combined domains, combined loops). Is the annotation the same as you 
prodicted? Describe the difference between your expert judgement 
and software annotation. (b) 

• Load CTCF track for this cell line (Load tracks -> Genome Annotations -> 
CTCF). Send the screenshot. Is CTCF associated with any Hi-C 
structures and why? Describe briefly in your report. (c*)
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Task 3. Loops, TADs and CTCF



Task 4. Command line tools
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Currently there is no gold standard in raw Hi-C data processing.  
Let's consider already prepared file with interactions heatmap in .cool format. 

Processing steps: 
1. Statistics retrieval  

2. Changing resolution 

3. Format conversions 

4. Iterative correction 

5. TADs calling 

6. Data visualisation 

7. TADs boundaries enrichment with ChIP-Seq data 



Task 4. Command line tools

We will use the following tools: 
● cooler for .cool manipulations (https://github.com/mirnylab/cooler) 
● HiCExplorer tools for Hi-C data conversion, processing and visualisation 

(https://hicexplorer.readthedocs.io/en/documentation/content/list-of-
tools.html) 

● deeptools for data association with ChIP-Seq (http://
deeptools.readthedocs.io/en/develop/content/list_of_tools.html) 

Data formats: 
• cooler is a sparse, compressed, binary persistent storage format for genomes 

interactions data 
• h5 is some Hi-C data format used by HiCExplorer 
• bed 
• bigWig format for ChIP-Seq  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https://github.com/mirnylab/cooler
https://hicexplorer.readthedocs.io/en/documentation/content/list-of-tools.html
https://hicexplorer.readthedocs.io/en/documentation/content/list-of-tools.html
https://hicexplorer.readthedocs.io/en/documentation/content/list-of-tools.html
http://deeptools.readthedocs.io/en/develop/content/list_of_tools.html
http://deeptools.readthedocs.io/en/develop/content/list_of_tools.html


0. Environment setup

• All the necessary packages are installed in anaconda environment at mg.uncb.iitp.ru  server. Thus 
it's highly recommended to work there:  

ssh -p9022 username@mg.uncb.iitp.ru 
mkdir EpiPract1 

cd EpiPract1 

unset PYTHONPATH 

export PATH="/mnt/local/bioinf_labs/home/galitsyna/anaconda3/bin:$PATH" 

• Test for proper setup: 
ls 
pwd 
conda list 

deeptools --help 

• Placement of all the datasets: 
/mnt/local/bioinf_labs/home/galitsyna/DATA/EpiPract1 

• ChIp-Seq annotation files for different proteins and cell lines of Drosophila:: 
/mnt/local/bioinf_labs/home/galitsyna/DATA/EpiPract1/ANNOTATION/ 

• Hi-C data files for different cell lines of Drosophila:  
/mnt/local/bioinf_labs/home/galitsyna/DATA/EpiPract1/COOL/

�59

mailto:username@mg.uncb.iitp.ru


0. Exercise files variants
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cool file ChIP-Seq file

Bella Bokan BG3.10000.cool BG3-Chriz.bigWig

Dilfuza Djamalova BG3.10000.cool BG3-CTCF.bigWig

Natalia Dranenko BG3.10000.cool BG3-H3K4me3.bigWig

Hilary Edema BG3.10000.cool BG3-JIL1.bigWig

Elizaveta Grigorashvili BG3.10000.cool BG3-RNAPolII.bigWig

Valeriia Kriukova BG3.10000.cool BG3-Su(Hw).bigWig

Ira Lisevich BG3.10000.cool BG3-WDS.bigWig

Anastasia Lubinets Kc167.10000.cool Kc167-Chriz.bigWig

Daniil Lukyanov Kc167.10000.cool Kc167-CTCF.bigWig

Valeriya Mikova Kc167.10000.cool Kc167-H3K4me3.bigWig

Anna Rybina Kc167.10000.cool Kc167-JIL1.bigWig

Marina Sarantseva Kc167.10000.cool Kc167-RNAPolII.bigWig

Natalia Trankova Kc167.10000.cool Kc167-Su(Hw).bigWig

Anastasiia Velikanova Kc167.10000.cool Kc167-WDS.bigWig

Artemy Zhigulev S2.10000.cool S2-Chriz.bigWig

Kulash Zhumadilova S2.10000.cool S2-CTCF.bigWig

Aleksandra Galitsyna S2.10000.cool S2-H3K4me3.bigWig



1. Statistics retrieval

Cooler contains multiple functions for cool manipulations, let's to find the 
number of contacts in file, e.g.: 

 
cooler info OSC.10000.cool  
 
Q. 1. What is the genome assembly, the resolution and number of contacts in 
your file? 

�61 Send me the answer in free text form as A.1



2. Changing resolution

We have data files with resolution 10000 bp (10 Kb), let's make it 20000 bp (20 Kb): 

cooler coarsen -k 2 -o OSC.20000.cool OSC.10000.cool

�62 This step has no answer, but it's required further



3. Format conversions

● cool is a very "young" format and some tools are not adjusted to process it. 
Thus file conversion is needed. hicExport tool from HiCExplorer can convert 
in between common Hi-C formats (https://hicexplorer.readthedocs.io/en/
documentation/content/tools/hicExport.html).  

● Let's convert cool to HiCExplorer format h5: 
 
hicConvertFormat --matrices OSC.20000.cool --outFileName OSC.20000.h5 \ 
--inputFormat cool --outputFormat h5 
 
You can now check file info with HiCExplorer (see chromosomes names, for 
example): 

hicInfo -m OSC.20000.h5 
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https://hicexplorer.readthedocs.io/en/documentation/content/tools/hicExport.html
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4. Iterative correction

● Now we need to normalise our dataset and correct for experimental biases 
with hicCorrectMatrix (https://hicexplorer.readthedocs.io/en/
documentation/content/tools/hicCorrectMatrix.html): 
 
hicCorrectMatrix correct --matrix OSC.20000.h5 \ 
--filterThreshold -10 10 -n 10 --out OSC.corr.20000.h5 
 
hicPlotMatrix -m OSC.20000.h5 -o OSC.raw.mtx.png --log1p \ 
--clearMaskedBins --region chrX:10000000-12000000 
 
hicPlotMatrix -m OSC.corr.20000.h5 -o OSC.corr.mtx.png --log1p \ 
--clearMaskedBins --region chrX:10000000-12000000 
 
Q. 2. What is the difference between heatmaps? Send me both files and your 
brief observations. 
 
Try to select the best parameters for the correction and visualisation. E.g. 
you can select any region of any size where you can see difference the most. 
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https://hicexplorer.readthedocs.io/en/documentation/content/tools/hicCorrectMatrix.html
https://hicexplorer.readthedocs.io/en/documentation/content/tools/hicCorrectMatrix.html
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4. Iterative correction

● This is my result, but the visualisation might be improved, try different 
parameters for that: 
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5. TADs calling

● Let's try to call TADs in our dataset with TADs caller implemented in 
HiCExplorer (https://hicexplorer.readthedocs.io/en/documentation/content/
tools/hicFindTADs.html). The concept is very similar to Insulation Score (IS).  
 
hicFindTADs -m OSC.corr.20000.h5 --outPrefix OSC_TADs \ 
--minDepth 60000 --maxDepth 1000000 --step 20000 \ 
--thresholdComparisons 0.05 --delta 0.01 \ 
--correctForMultipleTesting fdr 

● This command creates a list of files: 
OSC_TADs_boundaries.bed 
OSC_TADs_boundaries.gff 
OSC_TADs_domains.bed 
OSC_TADs_score.bedgraph 
OSC_TADs_tad_score.bm 
OSC_TADs_zscore_matrix.h5
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https://hicexplorer.readthedocs.io/en/documentation/content/tools/hicFindTADs.html
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6. Data visualisation

● Let's plot interaction heatmap and TADs together:  
 
hicPlotTADs --tracks tracks.ini --region chr2L:1000000-4000000 \ 
-o OSC.TADs.png 

● As you can see, TADs visualisation with HiCExplorer required tracks.ini file 
with plot description. It seems to be quite complex, though it allows to adjust 
the very detail of your plot: http://hicexplorer.readthedocs.io/en/
documentation/content/tools/hicPlotTADs.html?highlight=tracks.ini  

● The minimal working version of tracks.ini file is placed at the next slide. It 
might be improved. Try to change parameters in the file and produce the 
better visualisation of TADs and heatmap features.  
 
 
Q. 3. Does the TADs found by algorithm correspond to what you see? Send 
me the visualisation and your brief observations. Note that expected size of 
TADs in Drosophila is 120 Kb.
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http://hicexplorer.readthedocs.io/en/documentation/content/tools/hicPlotTADs.html?highlight=tracks.ini
http://hicexplorer.readthedocs.io/en/documentation/content/tools/hicPlotTADs.html?highlight=tracks.ini


6. Data visualisation

cat tracks.ini 

[hic] 
file = OSC.corr.20000.h5 
title = Hi-C 
colormap = Reds 
depth = 1000000 
#min_value = 1 
#max_value = 10000000 
transform = log1p 
boundaries_file = OSC_TADs_domains.bed 
x labels = yes 
type = interaction 
file_type = hic_matrix 
show_masked_bins = yes 
scale factor = 1 

[x-axis] 
fontsize=20 
where=top 

[spacer] 
width = 0.1
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7. TADs boundaries enrichment with ChIP-Seq data

● Let's compare TADs boundaries with some ChIP-Seq profiles 
with deeptools (see http://deeptools.readthedocs.io/en/
develop/content/example_gallery.html#dnase-accessibility-
at-enhancers-in-murine-es-cells).  
Note that it might be time-consuming step! Try to select-a 
and -b smaller to make it faster or larger to make it more 
informative. 
 
computeMatrix reference-point -S S2-CTCF.bigWig \ 
-R OSC_TADs_boundaries.bed --referencePoint center \ 
-a 200000 -b 200000 -out matrix_enrichment.tab.gz 
 
plotHeatmap -m matrix_enrichment.tab.gz \ 
-out enrichment.png --heatmapHeight 15 --colorMap jet \ 
--sortRegions ascend  --regionsLabel 'CTCF' 

● Q. 4. Is your factor enriched at TADs boundaries? Is there 
enough data to draw conclusions? Send me the visualisation 
and your brief observations.
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http://deeptools.readthedocs.io/en/develop/content/example_gallery.html#dnase-accessibility-at-enhancers-in-murine-es-cells
http://deeptools.readthedocs.io/en/develop/content/example_gallery.html#dnase-accessibility-at-enhancers-in-murine-es-cells
http://deeptools.readthedocs.io/en/develop/content/example_gallery.html#dnase-accessibility-at-enhancers-in-murine-es-cells


8. Extra task * 

● Collect the enrichment plots for the same factor, but for different cell types 
from your colleagues. Compare the results with yours. Is the abundance of 
factor the same at TAD boundaries? 
 
Add the results to your report and describe your observations for extra 2 
points for this homework. 
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Expected exercise results of Task 4.

Report to Aleksandra.Galitsyna@skoltech.ru until 9th of April 23:00.  
Subject: " SK EpiPractice1 <Your name and surname>"  
 
Letter content (in free txt, word, pptx or whatever readable format): 
Part 1. Work with Hi-C browsers. (10 pts) 

Part 2. Description of your activity in command line highlighting:  
Answer 1. Genome assembly, resolution and number of contacts in your file. (1 pt) 
Answer 2. Two images (corrected and raw) of heatmaps for arbitrary genomic region 
with a brief description of differences. (2 pt) 
Answer 3. One image with TADs plotted with interactions heatmap with a brief 
description. (3 pt) 
Answer 4. One image with TADs boundaries enrichment with your factor with a brief 
description. (4 pt) 
*Collecting results for different cell types from your colleagues and interpretation.  
Note that each student has his own set of data files! 
Extra points are added if you try to adjust commands parameters and send me the best final 
command (note that the final mark cannot exceed 20 pts).  
 
In total: 20 pts�71
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