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IntroDuctIon
The ultimate goal of many genome projects is to generate a gap-free 
and fully annotated genome. Next-generation sequencing (NGS) 
technology has greatly increased the throughput of DNA sequenc-
ing, and as a result the number of draft genomes deposited in public 
databases has increased markedly. However, although the quantity 
has increased, the quality of available genomes has suffered. This is 
because it is essential to engage in a very time-consuming process of 
manual editing and gap closure before a genome can be considered 
to be a finished or gold-standard product1. For the human genome 
project, the aspiration was to have a 1-bp error per 10 kb of finished 
sequence2. In addition to generating accurate genome sequences, 
genome annotation is an important and time-consuming aspect of 
de novo genome sequencing projects. These projects aim to generate 
high-quality annotated genomes that may be subsequently used as 
reference genomes—thus facilitating the re-sequencing and anno-
tation of many related species through comparative methods3,4. For 
the vast majority of NGS genome projects, the resources are simply 
not available to generate high-quality annotated sequences, and 
consequently many genomes may remain as poor-quality drafts.

In genome projects, the sequencing reads generated by the NGS 
technologies are usually assembled using specialist software into 
large numbers of contigs (please see the glossary of terms in Box 1).  
Genome assembly is a very difficult computational problem, and 
new approaches to assembly continue to be evaluated and devel-
oped5,6. Gaps, or discontinuities, in the sequence invariably remain 
and are due to issues such as uneven sequence coverage, long 
repeats, segmental duplications or technology biases. The resulting 
draft assemblies are thus frequently highly fragmented, incomplete 
and completely unannotated; regions of sequence within the draft 
will suffer from misassemblies, contamination and low quality, and 
the error rate will be much higher than 1 bp per 10 kb of assembled 
sequence. Furthermore, the types of error can be influenced by 
the characteristics of different sequencing technologies7,8. Although 
draft genomes do contain useful information, they have substantial 
limitations that may render complete and rigorous scientific analy-
ses difficult or impossible1,9.

In this protocol, we address these problems of genome qual-
ity through a pipeline of computational methods. Our protocol, 

PAGIT, is concerned with refining, improving and quality-checking  
the genome assemblies created using assembly software. When 
sufficient sequencing reads are available, PAGIT aims to raise the 
standard of the genome assembly from that of a ‘standard draft’ 
to one with features of a ‘high-quality’ or ‘improved high-quality 
draft’, as defined by Chain et al.1. Such assemblies may still contain 
misassembles, especially around repetitive areas, but many gaps will 
have been closed, and the quality of the assembly is good enough 
for gene discovery and comparative genetics.

PAGIT can be used for de novo assemblies or for reference-guided 
assemblies. It consists of four open-source computer programs that 
may be used either individually or together as a pipeline. PAGIT 
can be set up to run in a fully automatic manner. However, genome 
assembly is a complicated procedure, and it is highly advisable to 
manually check the output at each stage of the pipeline and adjust 
program parameters if necessary. PAGIT is therefore a semiauto-
matic computational method that aims to produce improved high-
quality draft genomes with minimum manual intervention.

Figure 1 shows how the four tools can be used to improve a 
genome assembly. The tools provide complementary function-
ality and are used once a first draft assembly has been obtained  
(we do not go into the detail of genome assembly here, as it has been 
recently covered elsewhere10–12). Here we briefly introduce the tools 
before explaining them in greater detail in subsequent sections:

(1)  ABACAS (algorithm-based automatic contiguation of  
assembled sequences) is a contig-ordering and orientation 
tool that is guided by alignments against a reference13 (which 
should have an amino acid identity of at least 40%). ABACAS 
outputs readily visualized files and, if required, PCR-primer 
sequences to close gaps.

(2) IMAGE (iterative mapping and assembly for gap elimination) 
uses paired-end sequence information to extend contig ends 
into gaps14.

(3) ICORN (iterative correction of reference nucleotides) enables 
errors in consensus sequences, including small insertions and 
deletions, as well as single base-pair errors, to be corrected by 
iteratively mapping reads to the sequence15.
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Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies.  
For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish 
these genomes to a high standard. nowadays, this is not feasible for most projects, and the quality of genomes is generally of 
a much lower standard. this protocol describes software (paGIt) that is used to improve the quality of draft genomes. It offers 
flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes 
(if available) in order to improve scaffolding and generating annotations. the protocol is most accessible for bacterial and small 
eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. applying paGIt to an E. coli 
assembly takes ~24 h: it doubles the average contig size and annotates over 4,300 gene models.
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(4) RATT (rapid annotation transfer tool) is a synteny-based 
algorithm that transfers annotation in minutes from a refer-
ence genome (or genomes) onto the draft genome assembly16.

For a de novo assembly, IMAGE and ICORN both offer useful  
functionality, and in some circumstances RATT may also be used. 
For example, when a de novo assembly is updated and the annota-
tions are transferred from an earlier version of the genome to the 
new version. For a reference-guided assembly, all four tools may 
be suitable.

PAGIT is available from http://www.sanger.ac.uk/resources/
software/pagit/. This website also provides links to additional  
information including documentation and source code for each 
of the tools.

Where has the protocol been used?
The components of PAGIT were developed at the Wellcome 
Trust Sanger Institute and have been applied to studies involv-
ing various parasites and pathogens, mostly involving small 
to medium-sized genomes (from 1 Mb up to 400 Mb). In one 
recent example, the protocol was used to aid the investigation 
of genome evolution in 240 isolates of multidrug-resistant 
Streptococcus pneumonia17, in which quick sequencing and 
assembly of hundreds of bacterial genomes was necessary.  

To accurately detect single-nucleotide polymorphisms (SNPs), 
and to distinguish them from polymorphisms arising through 
horizontal sequence transfer, the genomes needed to be highly 
accurate. PAGIT was used as a pipeline to generate the high-
quality genomes that were compared to investigate genomic 
plasticity and the evolution of drug resistance over short time 
scales. In another study18, a high-quality reference genome 
sequence for a strain of the human parasite Leishmania donovani 
was created using the full protocol with a combination of 454 
and Illumina sequencing technologies. This sequence was then 
used as a reference to study variation in a set of 16 clinical lines 
that differed in their responses to in vitro drug susceptibility. A 
related paper19 used ABACAS and ICORN to generate a reference 
genome for L. mexicana and refine reference genomes for three 
other Leishmania species.

The protocol may be applied in a flexible manner. During de novo 
assembly, in which no reference sequences are available, a subset of 
tools from the protocol may be used. For instance, IMAGE can be 
useful as a method of performing hybrid assemblies on the basis 
of long and short read types—by using a paired-end Illumina read 
library to fill the gaps in a capillary read or 454 assembly. A sub-
stantial update of the 360-Mb genome of Schistosoma mansoni used 
IMAGE with Illumina reads to fill gaps in an assembly based on 
capillary reads. As part of the finishing process, approximately 2,000 

 Box 1 | Glossary of terms 
alignment: the process of matching the order of bases between two or more DNA sequences so that the sequences map onto  
each other.
annotation: identifying and ascribing functional descriptions to regions of the genome, including genes and coding sequences.
Base calling: the automated process of determining the nucleotide base at a position in a sequence.
Base quality: a confidence score assigned to each base call. Low scores indicate a higher chance that the base may have been  
called incorrectly.
consensus sequence: during genome assembly, when overlapping reads have been combined to form a contig with sufficiently high 
coverage, the most common base in the reads at each position is taken to be the consensus sequence.
contig: a contiguous sequence of DNA assembled from overlapping reads.
coverage: the number or depth of reads that cover (extend over) a section of DNA sequence.
De novo genome assembly: a genome assembly that is performed without referring to any existing genomes or reference sequences.
Draft genome assembly: a set of contigs and/or scaffolds generated by a computer program that attempts to reconstruct original  
chromosomal sequences from sequenced reads. Draft genomes are frequently highly fragmented, unannotated and often contain  
assembly errors such as collapsed repeats.
Finished genome: the chromosomal sequences have been determined to an accuracy of at least 1 error in 10,000 base pairs. All contigs 
are placed in the right order and orientation along a chromosome with almost no gaps present. The sequence has been fully annotated.
Gaps: an unsequenced region of a scaffold that lies between two linked contigs.
Genome assembly: the process of using reads to reconstruct the original genome from which they were derived.
Insert size: the average or expected number of (unsequenced) bases that lie between paired-end reads as measured from their  
outermost bases.
Indel: an insertion or deletion in a DNA sequence.
Mapping: aligning reads or other relatively short sequences to a longer sequence such as a finished genome.
n50: the length, for a set of different-sized sequences, such that 50% of the genome is contained in sequences of at least that length. 
The larger the N50, the less-fragmented the genome.
paired-end reads or mate pairs: fragments of DNA sequenced from opposite ends of a larger fragment DNA that is of an approximately 
known size. Mate-pair libraries refer to large insert libraries sequenced over the paired ends.
read: data produced by a DNA sequencing machine from reading an individual DNA template in one direction.
reference genome: a high-quality draft or finished genome used to anchor alignments. The features of the sequence should have been 
annotated, and the contig length should be relatively long.
scaffold or supercontig: a portion of the genome sequence made by linking contigs together using paired-end reads. There will be 
gaps between the contigs that compose the scaffold.
synteny: the conserved gene order that is observed along the chromosomes of different species.

http://www.sanger.ac.uk/resources/software/pagit/
http://www.sanger.ac.uk/resources/software/pagit/
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of the gaps closed by IMAGE were visually inspected, and 90% of 
these gaps were verified manually. RATT was subsequently used to 
transfer the existing annotation to this new reference sequence20. 
When generating the 74.5-Mb genome of the parasitic nematode 
Bursaphelenchus xylophilus21 using a hybrid assembly approach 
based on the 454 and Illumina sequencing technologies, IMAGE 
and ICORN were used to close gaps and make corrections to the 
assembly. A similar approach (IMAGE and ICORN) was used for 
the 110-Mb genome of Hymenolepis microstoma, the mouse bile 
duct tapeworm22 and for the bacteria Staphylococcus lugdunensis23. 
In the case of S. lugdunensis, Illumina sequences were first assem-
bled using Velvet 0.7.62, and these contigs were then combined with 
454 reads in an assembly produced using Newbler 2.1. The resulting 
assembly consisted of 69 contigs in 9 scaffolds. IMAGE was then 
used to close further gaps before ICORN was applied. In the final 
assembly, all gaps were closed.

Individual components of PAGIT can be applied in isolation. 
For instance, ABACAS is also a tool for primer design when finish-
ing genomes using PCR-based approaches24,25 and for comparing 

contigs to a reference genome26. IMAGE 
has been used independently to close gaps 
in large hybrid de novo assemblies. For 
instance, an initial assembly of the tsetse 
fly Glossina moristans genome, produced 
using Sanger and 454 sequencing reads, was 
improved using IMAGE and several paired-
end Illumina libraries. The number of con-
tigs was reduced from 45,000 to 24,000, and 
average contig length more than doubled 
(the 360-Mb assembly is available at http://
www.genedb.org/).

Methods and algorithms
In the following paragraphs, we describe 
each software package in turn, as presented 
in Figure 1.

ABACAS: algorithm-based automatic conti-
guation of assembled sequences. ABACAS13 
is designed to help with sequencing closely 
related strains in which a high-quality refer-
ence sequence is available. By aligning contigs 
against a reference sequence, using NUCmer 
or PROmer from the MUMmer package27, 
ABACAS orders and orients contigs and 
estimates the sizes of gaps between them. 
ABACAS outputs files to allow the contig 
ordering to be visualized (for example, by 
using ACT, the Artemis Comparison Tool20,28), 
and within ABACAS primer sequences for 
PCR-based gap closure can be designed 
using Primer3 (ref. 29). ABACAS can show 
ambiguous and overlapping contigs and can 
be used with a genome browser to identify 
and visualize repetitive regions.

A number of tools have been developed 
for similar purposes: CONTIGuator30, 
which helps find divergent regions in the 
reference and the new genome; Projector2 

(ref. 31) which is a web service application for closing gaps in 
prokaryotic genome assemblies; and OSLay32, which requires 
a mapping file to find synteny for a set of contigs. The program 
r2cat (related reference contig arrangement tool33) is able to quickly 
match a set of contigs onto a related genome, order them and dis-
play the result. It seems to implement a matching algorithm that 
for microbial-sized genomes can be faster than NUCmer (which 
is used in ABACAS), but unlike NUCmer, no results are presented 
for larger genomes.

IMAGE: iterative mapping and sssembly for gap elimination. 
IMAGE14 is an approach that uses Illumina paired-end reads to 
extend contigs and close gaps within the scaffolds of a genome 
assembly. It functions in an iterative manner: at each step it identi-
fies pairs of short reads such that one of the pair maps to a contig 
end, whereas the other hangs into a gap. It then performs local 
assemblies using these mapped reads, thus extending the contig 
ends and creating small contig islands in the gaps. The process is 
repeated until contiguous sequence closes the gaps, or until there 
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Figure 1 | Summary of the four components of PAGIT.

http://www.genedb.org/
http://www.genedb.org/
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are no more mapping read pairs (see ANTICIPATED RESULTS and 
Figs. 2 and 3 that show the effect IMAGE can have on the number 
of gaps and the size of contigs in an E. coli assembly). IMAGE is 
able to close gaps using exactly the same data set that was used in 
the original assembly. This is because some read pairs that are too 
repetitive to incorporate into a genome-wide assembly can often 
be unambiguously aligned to a specific locus, such as a contig end. 
Once read pairs have been sorted in this manner, they can be suc-
cessfully incorporated into local assemblies.

A gap-closing algorithm similar to IMAGE was incorporated into 
the SOAPdenovo short read assembly program when it was used with 
the panda genome. This algorithm was able to close most of the gaps 
within scaffolds of the panda genome, leaving just 2.4% of the total 
scaffold sequence unclosed: those gaps that were unclosed either con-
tained transposable elements (90%) or long tandem repeats34. Other 
methods of gap closing involve comparing a collection of assem-
blies, perhaps generated with different assembly software or differ-
ent sequencing technologies, in order to identify ways of extending 
contigs, merging or reconciling contigs and using contigs from one 
assembly to bridge gaps in another. Such methods include the graph 
accordance assembly (GAA) program35, Reconciliator36 and CloG37.

Once IMAGE has closed gaps in an assembly, it can be worth 
attempting to calculate new scaffolding information for the new 
contigs, as this may then define a new set of gaps for IMAGE to close. 
There are a number of suitable scaffolding tools available. One of 
the first scaffolding tools was BAMBUS38, which can be applied to 
mammalian-sized genomes. More recently, scaffolding tools have 
been developed that specifically use deep coverage of paired reads 
from second-generation sequencing technologies. These include 
the following: SOPRA39, which is designed to handle SOLiD data 
sets for microbial genomes; SSPACE40, which scales to mammalian- 
sized genomes; and Opera, which uses a graphical method to pro-
duce an exact solution to the scaffolding problem41.

In addition to improving whole-genome assemblies, IMAGE can 
be used to assemble single genes of interest or to extend a known 
PCR product. This is performed by generating an initial ‘seed’ 
sequence of at least 300 bp. IMAGE is then used to extend the 
ends of the seed sequence. If the seed is initially placed like a small 
contig island within a scaffold gap, it may eventually merge into 
a larger fragment of sequence. The seed could also be a contig or 
supercontig of interest, as long it is longer than 300 bp.

ICORN: iterative correction of reference nucleotides. ICORN15 
is designed to identify and correct small errors in consensus 
sequences, including errors from low-quality bases or homopoly-
mer errors from pyrosequencing42. ICORN cannot correct large 
indels or other misassemblies in consensus sequences. Every 
genome assembly algorithm has a unique error profile for indel 
errors. In general, indel errors are minimized at the expense of con-
tig size, with aggressive assemblers generating long contigs that tend 
to have the most indel errors5. ICORN works by iteratively map-
ping short reads against a consensus sequence to identify potential 
single-base discrepancies or short insertions and deletions (up to 
3 bp). Before a correction is accepted, ICORN checks that it will 
increase the sequence accuracy by measuring the read coverage 
of perfectly mapping reads at that position. If the coverage is not 
decreased when the correction is incorporated, then it is likely that 
the new sequence is correct. Either a user specifies a number of 
iterations or ICORN continues until no new corrections can be 
made. ICORN uses SSAHA to perform the mappings43; the SSAHA 
pileup pipeline to call SNPs and small indels; and SNP-o-matic to 
evaluate potential corrections with perfect-mapping reads44.

There are few alternatives to ICORN. Such methods include algo-
rithms to improve base calling45 or to detect frameshifts by protein 
homology or by sequence analysis. Iterative mapping approaches 
have been used earlier to derive a consensus genome sequence from 
metagenomic sequencing data46, but as this derives from aggregated 
sequences from an unknown number of starting genotypes, the 
resulting consensus represents no single genome and hides much 
of the diversity present in the original sequence pool.

There are additional ways in which ICORN can be used.  
For example, it is possible to use ICORN to transform or morph a  
reference sequence into the sequence of an aligned comparator 
(e.g., reads from another strain or isolate) by ‘correcting’ the bases 
over many iterations. Once ICORN has completed many iterations, 
all the regions of the new consensus that have average read coverage 
of perfect-mapping reads will represent the comparator sequence. 
In contrast, those bases that are not well covered will be from the 
original reference sequence and should therefore be masked out.  
A disadvantage of this approach is that ICORN will only correct the 
sequence for insertions and deletions of up to 3 bp. Performing a  
de novo assembly is therefore necessary to find longer indels.
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Figure 2 | The 182 scaffolds in the E. coli assembly contain 342 gaps after 
being mapped to the reference genome. After 18 iterations of IMAGE, 223 of 
the gaps have been closed.
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Another application of ICORN is to find and confirm high-
quality sequence variation. ICORN improves on the functionality 
available in the SSAHA pileup pipeline. In ICORN, each variant is 
confirmed by perfectly mapped reads and checked and rechecked 
over a number of iterations. Once the sequence is corrected, new 
variants are often revealed that were initially obscured by the errors 
present in the initial sequence, whereas the evidence supporting 
other variants may have disappeared.

RATT: rapid annotation transfer tool. RATT16 was designed to 
help annotate in three situations. It transfers annotation between 
successive versions of a genome assembly, the genomes of closely 
related species or the genomes of closely related strains. Transfers 
are made from a high-quality reference to a new sequence by infer-
ring ‘orthology’ (or equivalency, in the case of successive assem-
bly versions) and hence gene function, guided by shared synteny 
between the genomes. The sequences of specific genes may differ 
between the genomes, and RATT therefore makes allowance for 
features such as changes to start/stop codons, the length of genes, 
splice sites or the presence of internal stop codons.

NUCmer from the MUMmer package27 is used to define the 
sequence regions that share synteny (at least 40% sequence iden-
tity). These regions are filtered according to whether the annotation 
is being transferred between species, strains or genome versions. 
Although this function defines the synteny between blocks, it is not 
enough to generate a 1-to-1 relationship between bases in the refer-
ence and query sequences. However, the ‘show-snp’ functionality 
from the MUMmer package is designed for identifying polymor-
phisms, including insertions and deletions, and it is subsequently 
used to refine the base-to-base relationships between the reference 
and query sequences.

Ambiguity may be a problem when identifying indels in repetitive 
regions. To overcome this, RATT recalibrates the adjusted coordi-
nates using SNPs (also identified using ‘show-snp’ from MUMmer) 
as unambiguous anchor points within synteny blocks. However, 
SNPs may be too rare for this if the sequences are very similar, in 
which case RATT temporarily modifies the query by inserting a 
faux SNP every 300 bp to aid in the recalibrating step: this change 
is reversed later so that it does not affect the final result.

Having defined the synteny blocks, the mapping stage takes place 
by associating each reference feature (from an EMBL file) with 
coordinates in the new genome. Potential mappings are ignored 
if a feature either (i) bridges a synteny break and its coordinate 
boundaries match different chromosomes or different DNA strands 
or (ii) if the newly mapped distance of its coordinates has increased 
by more than 20 kb. However, if a short sequence from the begin-
ning, middle or the end of a feature can be placed within a synteny 
region, mapping is attempted.

Useful output from RATT includes information on gene mod-
els that do not map cleanly; statistics about transferred features; 
the amount of synteny between the reference and query; and 
files that allow features of the genomes to be viewed in Artemis, 
such as SNPs, indels and regions that lack synteny between the  
compared sequences.

Although a number of other general automated annotation tools 
or pipelines do exist, such as Ensembl47, GARSA48 or SABIA49, they 
can be relatively complex and designed for large genome-sequencing  
centers that have an extensive network of existing software pack-
ages, servers and bioinformatics experts. In addition, for microbial 

systems there are additional specialized software resources such as 
the integrated microbial genomes system50. RATT is much simpler 
and more general than these approaches, and is therefore more 
suited to the environment of a small laboratory.

Limitations and important requirements
In the flowchart shown in Figure 4, we give an overview of how 
subsections of the PAGIT protocol may be applied to different 
problems and list the corresponding steps from the PROCEDURE 
section of this article. Table 1 summarizes the requirements that 
dictate whether a component of the protocol can be applied. If the 
requirement is not met, the respective component can be omitted 
from the protocol.

In order for ABACAS to generate good results, the reference 
genome must consist of longer and more contiguous sequences 
than the assembly of the query genome. This will allow multiple 
query sequences to align to a single reference sequence: the ideal 
situation is a single reference sequence or chromosome onto which 
many fragments from a query genome can be mapped, thus allow-
ing the relative order of the fragments, and the gaps between them, 
to be defined. Preferably, the reference sequences should contain 
fewer errors, and there should be an amino acid identity of at least 
40% between the reference and query sequences.

Care should be taken to ensure that synteny is conserved between 
the two genomes: they should be similar enough that intra- 
chromosomal rearrangements are relatively minor; otherwise, 
mapping sequences to the reference may place those sequences in 
an incorrect order. This needs to be considered on a case-by-case 
basis. Some bacteria, for example Wolbachia, are well known as 
having mosaic genomes, in which substantial genomic rearrange-
ments occur between species: such genomes are not suitable for use 
with ABACAS. Very short sequences (less than about 200 bp) are 
difficult to place because insufficient detectable synteny will pre-
vent ambiguous mappings from being resolved. Rearrangements 
between the reference and the query will be seen as long gaps,  
or large regions without synteny.

If the query and the reference are very similar, then after run-
ning ABACAS all sequences should be ordered against the reference 
genome. Furthermore, a minimal number of larger gaps is indica-
tive of a good-quality sequence ordering. The chances of a dele-
tion falling into a gap or of the assembler not joining the adjacent 
sequences is dependent on the quality of the assembly: the fewer 
the gaps in the initial assembly, the lower the chance that ABACAS 
will introduce errors. ABACAS produces a statistics file that outputs 
numbers of gaps, synteny information and ordered sequences. After 
running ABACAS, it is advisable to check for large gaps between 
mapped sequences or for a large quantity of unmapped sequences, 
as these are indicative of a low-quality mapping.

Although the current implementation of ABACAS is designed 
to run on reference genomes with a single chromosome, it can 
also be used with genomes that have more than one plasmid or 
chromosome (see PROCEDURE). ABACAS uses a sensitive version 
of NUCmer/PROmer, which could take a long time to complete 
for medium-sized genomes with large numbers of contigs. It is 
therefore important to use the parameter ‘-d’ to avoid searching for 
repetitive regions, which will improve run time without severely 
affecting sensitivity. If you are running it on large genomes, it is 
important to use the 64-bit version of PAGIT. The primer design 
functionality of ABACAS generates high-quality primers on the 
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basis of the uniqueness and composition 
of the sequence and may not always report 
primer sets for some regions.

The requirements for IMAGE are con-
cerned with the availability of paired 
Illumina sequences with at least 20× depth 
of coverage. IMAGE closes the gaps between 
contigs in scaffolds, and thus scaffolds are 
an essential requirement. Scaffolds are a 
standard output from most genome assem-
blers, including Velvet, Newbler and Celera, 
and they may be created using stand-alone 
software such as SSPACE40. Note that if the 
reference genome of a closely related spe-
cies exists, then ABACAS can be used to 
generate further scaffolding information 
for IMAGE (by mapping the initial assem-
bly scaffolds to the reference genome). 
However, it is important to check that the 
scaffolding information is correct; otherwise, IMAGE may close 
false gaps or may not close any gaps in the assembly. Depending 
on the repetitive nature of the genome, assembly quality and the 
coverage depth of the paired-end reads used by IMAGE, up to 50% 
of gaps can be closed. When using Illumina data, IMAGE can only 
run with paired reads with inserts of a few hundred base pairs.

ICORN will perform best if the coverage of the genome is between 
20 and 60× and distributed evenly over the complete genome. In 
this case, most of the bases will be successfully corrected, although 
repetitive regions where reads cannot be mapped unambiguously 
will not. General systematic errors in short reads are not possible to 
correct. For example, long homopolymer tracks with more than ten 
bases are often sequenced erroneously by Illumina technology15.

If a genome is larger than 6 Mb or if coverage exceeds 200×, 
then ICORN might perform slowly and might need a relatively 
large amount of memory (up to 15 GB). For a bacterial genome of 
around 4 Mb in size, with 100× coverage, each iteration should take 
less than an hour. Up to five iterations are typically performed, with 
about 80% of the errors corrected in the first iteration.

RATT requires an annotated reference genome for its input. The 
proportion of synteny between the reference genome and the new 
genome corresponds to the proportion of genes that can be trans-
ferred. The sequence identity to transfer the annotation should be 
over 40% for at least 50 bases upstream and downstream from the 
annotated feature. Gaps in either the reference genome or the new 
genome will adversely affect performance. For regions in which 
no synteny exists, no transfer can be carried out, and the user will 
then need to do ab initio gene finding and functional annotation3, 
perhaps using gene prediction software such as Augustus51. Such 
unannotated regions are flagged and written to a file that can be 
loaded onto the new reference. For bacterial-sized genomes, RATT 
uses around 1 Gb of RAM and runs in around 5–10 min, whereas 
for malaria-sized genomes (about 23 Mb) it requires up to 6 Gb of 
RAM and 10–30 min.

Scalability issues
PAGIT was designed mainly for working on parasite genomes 
of up to about 300 Mb. In this protocol, we have emphasized its 

taBle 1 | The essential input data and hardware requirements for each software tool in the protocol.

reference  
genome needed?

paired-end 
reads needed?

sequencing 
technology

Genome size 4–25 Mbp Genome size several Gbp

raM (Gb) time Disk (Gb) raM (Gb) time (h) Disk (Gb)

ABACAS Yes No None Low 2–60 min Low 100 24 20

IMAGE No Yes Illumina Up to 2 8–48 H 50–100 8Para 120Para 500Para

ICORN No Preferred Illumina 10–60 5–72 H 10–100 NA NA NA

RATT Yes No None 2–6 2–30 min Low 100 4–12 5
Where ‘Low’ is given, the requirement is for much  < 1 Gb of RAM or hard disk. Please note that for larger genomes it will be essential to use parallel versions of the tools. The superscript ‘Para’ indicates that 
the requirements refer to the parallel version using about 100 CPU cores. NA, not applicable.

No

Reads

Assembly validation:
Box 2

Alternative applications

ABACAS: Box 3
PCR primer design

IMAGE: Box 5
Seeding contigs

ICORN: Box 7
Variant detection

Reference-based
assembly

ABACAS: Steps 8–17
Order contigs

ICORN: Steps 25–32
Error correction

IMAGE: Steps 18–24
Iterative gap closing

RATT: Steps 33–43
Annotation transfer

Final
assembly

Final
assembly

Assembly validation:
Box 2

IMAGE: Steps 18–24
Iterative gap closing

ICORN: Steps 25–32
Error correction

De novo
assembly

Yes

Reads

Is a
reference
genome

available?

Figure 4 | The basic workflow of the protocol  
is shown for two common use-cases: for  
de novo assembly and when a reference genome 
is available. Some alternative applications of the 
PAGIT components are indicated. Corresponding 
steps from the PROCEDURE section are listed.
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applicability to smaller genomes, which can be worked on rela-
tively quickly and simply without the need for parallelization or 
specialized computing infrastructure. However, it is worth noting 
that the tools may be used on considerably larger genomes if such 
infrastructure is available.

ABACAS and RATT both rely on MUMmer tools to perform 
their alignments, and when run in the default 32-bit mode this 
limits the size of the genomes being aligned to about 200–300 Mb. 
However, when MUMmer is compiled in a 64-bit mode, this limi-
tation no longer applies—as long as enough RAM is available to 
handle the larger genome alignments. To reduce the run time, it is 
also advisable to use larger seeds in the alignments, which are con-
trolled via the ABACAS ‘-s’ parameter. For example, using ABACAS 
to order contigs from an assembly of mouse chromosome 1 against 
the complete mouse genome required almost 100 Gb of RAM and 
took about 4 h. To transfer with RATT a subset of the annotation 
of the human genome to the chimpanzee genome required 60 Gb 
of RAM and took about 70 min. These tests were performed using 
an Intel Xeon 2.40 GHz E7440 processor.

IMAGE and ICORN do not scale so easily in the serial implemen-
tations, as we have discussed in this paper. The IMAGE and ICORN 
serial implementations are currently unsuitable for genomes larger 
than about 25 Mb. Much of their limitation comes from the large 
numbers of reads that need to be mapped. For small genomes, reads 
can usually be mapped in hours using a single processor, but for 

larger genomes this can take weeks, and then it is highly desirable 
to speed up this process by using a high-throughput computing 
resource. IMAGE is also limited by the numbers of gaps that must 
be closed: many gaps means that many local assemblies must be 
performed to close those gaps. Versions of IMAGE and ICORN that 
are able to parallelize tasks via the Platform LSF cluster manage-
ment system are available from the SourceForge websites of these 
tools (which are linked to from the PAGIT website). For the parallel 
versions, IMAGE can scale up to genomes of gigabytes in size (it 
has been used on mouse), and ICORN can be applied to genomes 
of up to ~300 Mb.

Expected improvements
Sequencing technologies are rapidly evolving, and the tools com-
posing the PAGIT protocol are continuously under development 
in order to adapt to those changes. In future, ABACAS should be 
able to join two neighboring contigs, if they overlap with at least 50 
bases and no mismatches. IMAGE will support newer sequencing 
technologies such as the PacBio RS from Pacific Biosciences or Ion 
Torrent, whereas improvements to ICORN will allow different tools 
to be used to map reads and call variants (with considerably lower 
memory requirements than the currently used SSAHA pileup pipe-
line). Finally, future developments for RATT are concerned with 
accurately transferring greater numbers of genes between species 
that are more distant.

MaterIals
EQUIPMENT
Hardware and software

The protocol is designed for a Linux environment. Depending on the  
size of the target genomes, different requirements may arise, as discussed 
in the preceding sections. For genomes of up to 200 Mb, a machine  
with about 16 Gb of RAM and about 50 Gb of free disk space could be 
sufficient. The whole pipeline should complete in about 1 d for microbial 
genomes, or several days for larger genomes (a computer cluster may  
be required)
There are two ways to run PAGIT: as Linux binaries (recommended) or as 
a preinstalled Linux version running under a virtual machine. The virtual 
machine can run under MAC OS or Windows and should be sufficient for ge-
nomes of up to 3 Mb. We have precompiled Linux and virtual machine versions 

•

•

of PAGIT for 32-bit and 64-bit systems. The 64-bit virtual machine should be 
able to access more RAM and may therefore be suitable for larger genomes
For the Linux version, a bash-shell must be running, and a tcsh-shell and 
Java version 1.6 (http://www.java.com/en/download/manual.jsp) must be 
preinstalled
For the virtual machine version, the virtual box software from VirtualBox 
must be downloaded and installed. This process is well documented at  
https://www.virtualbox.org/wiki/Downloads
PAGIT is available from http://www.sanger.ac.uk/resources/software/pagit/

Input data A genome assembly in FASTA format is essential. Also required is 
one or more reference genome sequences in FASTA format, reference genome 
annotations in EMBL format, and Illumina reads in FASTQ format (See 
Table 1 for further details)

•

•

•

proceDure
obtaining and installing paGIt ● tIMInG 15–45 min
1| There are two recommended ways to install PAGIT, depending on the available operating system. Follow option A for 
Linux or option B for Windows or MAC OS:
(a) linux
 (i)  Download the appropriate compressed tar archive for your Linux system. Click on either the ‘Linux binary ×32bit’ or the 

‘Linux binary ×64bit’ link from the ‘Download’ tab of the PAGIT website: http://www.sanger.ac.uk/resources/software/
pagit/.

 (ii)  Move the compressed tar archive to the location where you want PAGIT installed, and then decompress the tar ball by 
typing the following three commands in a terminal window:

$ mv PAGIT.V1.64bit.tgz /path/to/my/installed/software 
$ cd /path/to/my/installed/software 
$ tar xzf PAGIT.V1.64bit.tgz 

 (iii)  Execute the install script by typing the following in a terminal window:
$ bash ./installme.sh 
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 (iv)  Switch to bash-shell:
$ bash

 (v)  Source the environment settings to run PAGIT:
$ source PAGIT/sourceme.pagit  
 crItIcal step The environment settings for PAGIT should be sourced each time PAGIT is executed. Alternatively, the 
command ‘source PAGIT/sourceme.pagit’ may be included in your local environmental variable file (for example, the file ‘~/.
bashrc’) so that the PAGIT environment is automatically initialized.

(B) Windows or Mac os
 (i)  If you have not done so already, download the VirtualBox software from VirtualBox and install it according the Virtual-

Box documentation: https://www.virtualbox.org/wiki/Downloads.
 (ii)  Download the PAGIT virtual machine required for your Linux system. Click on either the ‘Virtual Machine 32 bit’ or 

the ‘Virtual Machine 64 bit’ link from the ‘Download’ tab of the PAGIT website: http://www.sanger.ac.uk/resources/
software/pagit/.

 (iii)  Register the downloaded PAGIT virtual machine. Open VirtualBox and click on new to create a new virtual machine. 
Click on ‘next’ to move through the registration screens.

 (iv)  Name the virtual machine (e.g., PAGIT) and select the operating system and version: ‘Linux’ and then either ‘Ubuntu’ 
or ‘Ubuntu64’.

 (v)  Specify the amount of memory to be allocated. You should not give the virtual machine more than 75% of the  
complete memory available, but it should have at least 2 GB.

 (vi)  Specify the virtual hard disk using the toggle on the ‘use existing hard disk’ option and click on the file icon to find 
and select the downloaded PAGIT virtual machine. (‘Start-Up Disk’ should be enabled.)

 (vii)  To start the virtual machine, select it and click on the green arrow.

2| Running the PAGIT test example. Move to the PAGIT test example directory by typing the following in a terminal window:
$ cd $PAGIT_HOME/exampleTestset/ 

3| Run the test by typing the following in a terminal window:
$ bash ./dotestrun.sh 

4| Initial setup of input files. Make a working directory for PAGIT. Type the following command in a terminal window:
$ mkdir myWorkingDir

5| Either copy the initial assembly or, to make a symbolic link from it to the working directory, type the following  
two commands in a terminal window:
$ cd myWorkingDir
$ ln -s /path/to/assembly/scaffolds.fasta ./assembly.fasta

 crItIcal step Before proceeding with assembly improvements, it may be worth validating the quality of the initial  
assembly. Methods to achieve this are given in Box 2.

6| Copy the read libraries, the reference genome sequence and the reference genome annotation; alternatively, to link them 
to the working directory, type the following four commands in a terminal window:
$ ln -s /path/to/reads/readLibraryPart_1.fastq .
$ ln -s /path/to/reads/readLibraryPart_2.fastq . 
$ ln -s /path/to/reference/Refsequence.fasta . 
$ ln -s /path/to/reference/Refannotations.embl . 

7| (Optional) Find reference annotations online through searching the ‘Genome’ database at the NCBI (http://www.
ncbi.nlm.nih.gov/genome/), and then convert the NCBI annotations, which are in GenBank format, to EMBL format. 
There are a number of ways to convert annotations (one easy way is to load the GenBank file into Artemis and save 
it as an EMBL entry, but here we use a bioperl script available from the RATT website to perform the conversion). 
There are two arguments to the script: the first is the GenBank annotations, the second the output file with the an-
notations in the EMBL format:
$ genbank2embl.pl Refannotations.gbk Refannotations.embl

 crItIcal step Alternatively, annotations are stored at the EBI (http://www.ebi.ac.uk/) in EMBL format with the same  
accession numbers as used by the NCBI.

http://www.sanger.ac.uk/resources/software/pagit/
http://www.sanger.ac.uk/resources/software/pagit/
http://www.ncbi.nlm.nih.gov/genome/
http://www.ncbi.nlm.nih.gov/genome/
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running aBacas to order contigs or scaffolds on a reference genome ● tIMInG up to 40 min
8| Set up a working directory for ABACAS, and link in the files containing the genome assembly and the reference genome 
by typing the following five commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runABACAS
$ cd runABACAS
$ ln -s ../assembly.fasta .
$ ln -s ../Refsequence.fasta .

 crItIcal step ABACAS can also be used for primer design, as described in Box 3.

9| (Optional) If there are multiple chromosomes, plasmids or other sequences in the reference file, then, before ABACAS is 
executed, these must be joined in such a manner that they appear to be a single reference sequence. After the alignment, 
the mapped contigs can be subdivided according to the reference sequences they were mapped against (Step 11). Type the 

 Box 2 | Assembly validation using ICORN and Artemis 
Genome assembly algorithms often misassemble fragments of a genome5,9. Many of these mistakes cannot currently be corrected  
automatically; however, software for evaluating and identifying potential misassemblies has been developed54. Here we describe a few 
ways in which ICORN and Artemis can be used to check and evaluate the consensus sequence:

1. The following approach can be used to check whether certain regions in the genome are not covered by perfectly mapping reads  
(a read and its mate are considered ‘perfectly mapping’ if they are identical to the reference and their mapping distance is in the 
expected insert size). The ‘getPerfectCoverage.2lanes.sh’ script uses the very fast SNP-o-matic algorithm to generate plot files for each 
sequence in a given file. It should take about 5 min for bacterial genomes. The arguments to the script are as follows: the genome 
sequence; the first Illumina FASTQ file; the second Illumina FASTQ file; and the mean fragment size for the paired Illumina reads. 
Standard output should indicate the coverage levels. Plots for each sequence can be found in the output directory ‘PerfectCoverage-
plots’. Type the following command in a terminal window:
$ getPerfectCoverage.2lanes.sh finalICORNresult.fasta pairedReadsPart_1.fastq pairedReadsPart_2.fastq 300

The generated plots can be loaded into Artemis. Possible problems with the assembly are indicated where the coverage drops toward 
zero. Then using the logarithmic view, the sink in the plots are more visible. Please note that SNP-o-matic maps a repetitive mapping 
read pair to all the possible positions in the genome. This means that if a repetitive region is represented three times in a genome, the 
coverage would be tripled as compared with the rest of the genome.

2. Possible misassemblies can be found in regions with 0 or  < 5 perfect-mapping reads. Those potential erroneous regions can be 
converted to a sequencing gap (i.e., the bases are switched to Ns). Rather than do this manually in Artemis, it is easiest to use the 
‘PerfectMapping2n.pl’ script, with the directory ‘PerfectCoverageplots’ generated by the ‘getPerfectCoverage.2lanes.sh’ script (described 
above), to generate a new FASTA file, ‘result.fasta’. Type the following in a terminal window:
$ PerfectMapping2n.pl finalICORNresult.fasta PerfectCoverageplots result.fasta

The standard output will report how many bases were converted to Ns. For all further downstream analysis, it is recommended to use 
this output. Please note that this script could also be run on an initial assembly, or on the output from ABACAS, so that the regions 
converted to Ns could subsequently be closed by IMAGE. The only drawback could be that few reads map close to the ends of contigs, 
and therefore the gaps might be extended. Please note that although the script can find misassemblies, it cannot be guaranteed to 
find them all.

3. Another option for investigating the quality of the consensus sequence is to map the sequencing reads back to it and visualize the 
resulting BAM file in Artemis or ACT (a BAM file contains all mapping information for all the reads). PAGIT has a script to map the 
reads with SMALT (http://www.sanger.ac.uk/resources/software/smalt/) against the given reference and generate a BAM file called 
‘little.smalt.bam.sh’. The first parameter is the sequence file, followed by the k-mer and step size for SMALT. We suggest leaving those 
as given in this example. Next, the forward and reverse reads are given. The last two parameters are the output prefix for the mapping 
results and the insert size of the read pairs:
$ little.smalt.bam.sh finalICORNresult.fasta 15 3 pairedReadsPart_1.fastq pairedReadsPart_2.fastq ResultMapping 1000

To open the BAM file in Artemis, type the following command:
$ art -Dbam = ResultMapping.bam finalICORNresult.fasta

Visualizing mapped reads is a powerful way to analyze the data. For example, it is possible to check whether the coverage over the 
ABACAS bin contigs (i.e., the contigs that were not aligned against the reference) is equal to that of the rest of the assembly— 
contamination and new plasmids have different coverage levels. It is possible to examine if the two mates are mapping on different 
contigs, and then it might be appropriate to order (i.e., scaffold) the contigs manually. Smaller regions of higher coverage could  
indicate collapsed repeats. Regions with heterozygous SNPs (such that not all reads have the SNP) in haploid genomes can indicate 
indels. For examples please see http://www.sanger.ac.uk/resources/software/artemis/ngs/ and ref. 20.
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following command in a terminal window to join the reference sequences into the file: ‘Refsequence.union.fasta’. This file 
should now be used in place of the file ‘Refsequence.fasta’ in subsequent steps:
$ perl $PAGIT_HOME/ABACAS/joinMultifasta.pl Refsequence.fasta Refsequence.union.fasta

10| Check the ABACAS usage information and view basic help, and then run ABACAS with the required parameters. The main 
parameters are as follows: the ‘-r’ flag, which is used to specify the file containing the reference genome; the ‘-q’ flag, which 
specifies the file containing the assembled sequences that are to be ordered; the ‘-p’ flag, which specifies which alignment 
program to use (either NUCmer for alignment in nucleic acid space or PROmer for alignment in amino acid space); and the 
‘-o’ flag, which specifies the prefix for the output file names. The default options generate ordered contigs in a single FASTA 
file. However, by using flags ‘-m’ and ‘-b’, multiple-FASTA format files of the ordered contigs and the unused contigs (from 
the bin) can be produced. Call ABACAS by typing the following two commands in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -h
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta -p nucmer 
-m -b -o myPrefix

! cautIon Errors may occur if two or more instances of ABACAS are running in the same directory. This is because the 
alignment software NUCmer or PROmer always outputs a temporary file with the same name, and thus multiple instances of 
ABACAS will attempt to read and write from the same file. Only run a single ABACAS instance in a directory at a time. 
 crItIcal step If you have a circular genome, you can use the ‘-c’ flag. 
? trouBlesHootInG

11| (Optional) If you ran the ‘joinMultifasta.pl’ script (Step 9) before running ABACAS, then you will need to use the ‘splitA-
BACASunion.pl’ script to decompose the results into contig mappings against the individual reference sequences. The results 
will be ‘myPrefix.ReferenceName.fasta’ and ‘myPrefix.ReferenceName.tab’, where ‘ReferenceName’ stands for the replicon 
names from the reference. Type the following command in a terminal window, where the three files beginning with ‘myPrefix’ 
will be the output from the ABACAS run:
$ perl $PAGIT_HOME/ABACAS/splitABACASunion.pl Refsequence.fasta Refsequence.union.fasta  
myPrefix.fasta myPrefix.crunch myPrefix.tab

12| Check the ABACAS output (Box 4). To gain a general overview of the results, first look at the file ‘myPrefix.gaps.stats’. This file 
provides a quick summary of the gaps present in the ordered pseudomolecule. Type the following command in a terminal window:
$ more myPrefix.gaps.stats

! cautIon ABACAS is not designed to order genomes in which rearrangement is expected, as it might result in the wrong order 
of contigs. Large gaps listed in the file ‘myPrefix.gaps.stats’ can indicate possible rearrangements between the genomes. 
? trouBlesHootInG

 Box 3 | Running ABACAS for primer design ● tIMInG ~15 min 
1. After the contig ordering is completed, ABACAS will prompt users to provide appropriate parameters for selecting primers. These 
parameters include primer size, melting temperature, size of flanking regions, product size and GC content of primers. Primers can be 
automatically designed while ordering contigs using the following command:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta -p nucmer -m -b -o myOutput –P 

 crItIcal step Sequence gaps represented as Ns (as small as 1 bp) will be identified by ABACAS for primer design. It is therefore 
important to check the distribution of gap sizes before setting the maximum product size.
?  trouBlesHootInG
2. Primer design can also be performed independently after the contig-ordering stage. Here the flag ‘-e’ dictates that ABACAS will 
ignore the sequence-ordering step and go directly to designing primers. Primer sets are checked for uniqueness against the reference 
genome using a sensitive NUCmer search. The primer design phase could be repeated for different parameters without reordering con-
tigs. To perform this, type the following command in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta –e

?  trouBlesHootInG
3. Check the ABACAS output. Sense and antisense primers are written in separate files formatted using a 96-well plate: ‘sense_primers.
out’ and ‘antiSense_primers.out’. Other output files include a primer3 summary file with alternative primer sets: ‘antiSense_primers.out’. 
See Box 4 for further information on ABACAS output.

4. ABACAS can also be used to design primers to validate SNPs from functional studies by replacing each putative SNP position with  
5 Ns, and thus ABACAS assumes they are gaps and therefore will design primers over the regions.
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13| (Optional) To visualize the mapped alignments using the ACT genome browser, type the following command in a  
terminal window:
$ act Refsequence.fasta myPrefix.fasta.crunch myPrefix.fasta 

14| (Optional) To view other ABACAS output files in ACT, such as feature files describing ordered contigs and gaps (‘myPrefix.
tab’ and ‘myPrefix.gaps.tab’), then in ACT go to File Read an entry and select ‘myPrefix.gaps.tab’.

15| (Optional) Unmapped contigs will be placed in the ABACAS bin: it is recommended to BLAST the contigs in the bin 
against the reference by using ABACAS with the ‘-b -t’ options. If the binned contigs have acceptable matches with the  
reference according to the BLAST results, then the ordering parameters used by ABACAS may have been too strict. It is there-
fore recommended to rerun ABACAS with slightly less stringent parameters, or to improve the ordering by moving contigs 
around using a genome browser such as ACT. In ABACAS, the option ‘-a’ will append the bin contigs at the end of  
the pseudomolecule, and these will then be visible in ACT for manual adjustment. This option is not recommended if IMAGE 
will be run subsequently, as the contig borders will be lost. 
! cautIon The contigs in the bin may contain important biological information, such as strain-specific insertions, plasmids 
or highly diverged sequence, which might be worth further investigation.

16| (Optional) The crunch file generated through NUCmer or PROmer is not as accurate as a BLAST comparison file; however, 
it is possible to generate a BLAST comparison file. To do this, first create a blast database from the reference genome, then 
BLAST the mapped contigs against the created BLAST database and finally start up ACT. Type the following three commands 
in a terminal window:
$ formatdb -p F -i Refsequence.fasta
$ blastall -p tblastx -e 1e-20 -m 8 -d Refsequence.fasta -i myPrefix.fasta -o myPrefix.blast
$ act Refsequence.fasta myPrefix.blast myPrefix.fasta 

 crItIcal step To obtain a nucleotide comparison rather that a six-frame comparison, change ‘TBLASTX’ to ‘BLASTN’.

 Box 4 | Output interpretation for ABACAS 
To gain a quick overview of the output of ABACAS, look at the file ‘myPrefix.gaps.stats’. This file gives statistics about the gaps 
that remain in the assembly after mapping it to the reference. These include the number of overlapping gaps and real gaps, as 
well as further statistics on the real gaps, such as the minimum, maximum and median gap size, the sum of all the gaps and the 
N50 gap size.

Two types of gaps are considered in the output of ABACAS. Real gaps are regions of the reference genome where no contigs map. 
Overlapping gaps are derived from two contigs that map to the genome and which overlap in their mapped positions, often owing to 
low-quality sequences at the ends of contigs. A gap is therefore inserted between the mapped contigs and can subsequently be closed 
by running IMAGE. ABACAS introduces 100 Ns (or a number specified by the user using flag ‘-g’) to distinguish such gaps from real or 
genuine gaps.

To gain a clearer view of the contig mapping, ABACAS produces output files that may be visualized using a genome browser such as 
Artemis or ACT. These files include the following:
 ● myPrefix.crunch: this is the main file to be used by a genome browser. The format is standard for genome browsers and is described 
in the Artemis manual.
 ● myPrefix.tab: this is a genome browser feature file and it gives color-coded mapping information that describes whether the  
contigs align in a forward or reverse direction, or whether they are overlapping.
 ● myPrefix.gaps.tab: this is a genome browser feature file that describes the length and type of gaps (i.e., overlapping or  
real gaps).

Other output files list some general information about the contig mappings:
 ● myPrefix.gaps: each line in this file describes one of the gaps. The columns in this file are as follows: the first is always the text 
‘Gap’. The second is the size of the gap. Columns three to six represent start and end positions on the pseudomolecule and then start 
and end positions on the reference. The final column describes whether the gap is a nonoverlapping (i.e., real) gap, or if it is a gap 
introduced because of overlapping contigs. A quick overview of gap sizes can be found from the second column of the *.gaps output 
file (awk ‘print $2 ‘ *.gaps). Extracting this column to a file will allow for quick statistics of the gaps using R or excel.
 ● myPrefix.bin: a list of unmapped contigs.
 ● myPrefix.fasta: this is the output sequence, i.e., the contigs mapped to the chromosome or chromosomes with the gaps denoted by 
a series of Ns.
Please note that ABACAS has various parameters that may be used to control the output, as described in its usage information.
?  trouBlesHootInG
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17| In preparation for running IMAGE, concatenate together the mapped sequences and the unmapped sequences. Type the 
following command in a terminal window:
$ cat myPrefix.fasta myPrefix.contigsInbin.fasta > mappedAndUnmapped.fasta

! cautIon If this concatenation step is skipped (or if the ‘-b’ option is not used with ABACAS), then the unmapped  
sequences of the genome will be lost to subsequent steps of the protocol. Note that the ‘-a’ option should not have been 
used, because the unordered contigs would be part of the ordered pseudomolecule.

running IMaGe to close gaps in scaffolds ● tIMInG ~6 h
18| Set up a working directory for IMAGE, and link in the files containing the short read pairs by typing the following  
five commands in a terminal window:
$ cd /path/to/myWorkingDir 
$ mkdir runIMAGE
$ cd runIMAGE 
$ ln -s /path/to/pairedReadsPart_1.fastq .
$ ln -s /path/to/pairedReadsPart_2.fastq .

! cautIon Before running IMAGE (or generally doing assemblies), sequencing reads should be cleaned from possible 
sequencing vector, as they can generate assembly errors. Reads can be trimmed or removed from the read set, e.g., using 
Cutadapt (http://code.google.com/p/cutadapt/). 
 crItIcal step IMAGE can also be used for extending seed sequences into longer contigs as described in Box 5.

19| To link in the latest assembly, either the output from ABACAS (from Step 17) or the sequence output from a de novo  
assembly, type the following command into a terminal window:
$ ln -s /path/to/assembly./inputScaffolds.fasta

20| Check IMAGE usage information and view basic help, by typing the following command in a terminal window:
$ perl $PAGIT_HOME/IMAGE/image.pl

! cautIon It can be a good idea to remove smaller contigs ( < 500 bp) from the assembly before running IMAGE. If a contig 
should have been placed in the gap of a scaffold or a pseudomolecule, but was not, then it is just possible to close this gap 
by deleting the small contig.

 Box 5 | Using IMAGE for extending seed sequences into longer contigs  
● tIMInG ~2 h 
1. Set up a working directory for IMAGE, and link in the files containing the seed sequences and the read pairs by typing the following 
six commands in a terminal window:
$ cd /path/to/myWorkingDir 

$ mkdir runIMAGE 

$ cd runIMAGE

$ ln -s /path/to/pairedReadsPart_1.fastq .

$ ln -s /path/to/pairedReadsPart_2.fastq . 

$ ln -s /path/to/seed.fasta . 

! cautIon The initial seed sequences must be of at least 300 bp.

2. Run IMAGE using the ‘-smalt_minScore’ parameter and specify a relatively large number of iterations. The ‘-smalt_minScore’ param-
eter is used to specify the Smith-Waterman score that a read has when mapped onto the reference: if it maps with its complete length, 
without any mismatch or indel, then the score is equal to the read length, whereas if it maps with one mismatch then the score is 
the read length minus 3. Therefore, to map the reads to positions where each read would be expected to have three mismatches, the 
‘-smalt_minScore’ parameter would be set to the read length minus 9. In this way, the ‘-smalt_minScore’ parameter is used to tighten 
the constraints on where a read is mapped to a contig—and it therefore determines whether the second read of the pair is able to  
extend the contig and thus should be included in a local assembly. Type the following command in a terminal window (for 75 bp reads):
$ perl $PAGIT_HOME/IMAGE/image.pl -scaffold seed.fasta -prefix pairedReadsPart -iteration 1  

-all_iteration 30 -dir_prefix ite_seed - smalt_minScore 67 -kmer 71

! cautIon If the seed is similar to another region of the genome, this approach may create a chimeric contig.
 crItIcal step It is important that the mapping constraints be tight enough to ensure that reads from different regions of the 
genome do not map to the seed.
 crItIcal step It is best to use large k-mers for seeding applications.

3. To check the results using the ‘image_run_summary.pl’ script, as described in PROCEDURE Step 22, type the following command in a 
terminal window:
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl ite_seed
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21| Run IMAGE with the required parameters by executing one of the following sets of commands; option A represents 
the simplest usage, whereas option B optimizes the gap closing. In the following, the ‘-scaffolds’ option defines an 
input file in FASTA format of sequences containing gaps to be closed; the ‘-prefix’ option identifies the FASTQ files 
containing the read pair sequences; the ‘-dir_prefix’ option gives the directory name prefix for the directories containing 
the output files for each iteration; the option ‘-iteration’ specifies the number of the first iteration; and the ‘-all_ 
iteration’ option defines the range or total number of iterations. These numbers are combined with the directory prefix 
to create the names of the output directories. Finally, the ‘-kmer’ option specifies the k-mer used for the local  
assemblies performed at the gaps:
(a) the simplest usage of IMaGe
 (i)  To use a single k-mer and to run through a number of iterations without restarting, type the following command in a 

terminal window:
$ perl $PAGIT_HOME/IMAGE/image.pl -scaffolds inputScaffolds.fasta -prefix pairedReadsPart 
-iteration 1 -all_iteration 9 -dir_prefix ite -kmer 55

(B) optimizing the gap closing
 (i)  If the reads used to span the gaps are relatively large (for example, 108 bp), then the results from IMAGE can be im-

proved by using a range of different k-mers. To run IMAGE with a range of k-mers, type the following four commands in 
a terminal window:

$ perl $PAGIT_HOME/IMAGE/image.pl -scaffolds inputScaffolds.fasta -prefix pairedReadsPart 
-iteration 1 -all_iteration3 -dir_prefix ite -kmer 91
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite3 71 3 partitioned
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite6 51 3 partitioned
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite9 31 3 partitioned

 crItIcal step Note that the initial iterations of IMAGE close most of the gaps, especially the first and second iterations. 
If time or computational resources are limited, then just running 1 or maybe 2 iterations with a small k-mer can still  
substantially improve a genome assembly.

22| Check the output of IMAGE (Box 6). In each iteration directory (these directories are called after the value given 
to the ‘-dir_prefix’ parameter) there is a file called ‘walk2.summary’, which contains some statistics describing what was 
achieved during that gap-closing iteration. A summary of the statistics in each of these files may be viewed by using the 

 Box 6 | Output interpretation for IMAGE 
IMAGE outputs a relatively large number of files when it is running, but only a small number need be of interest to the user: these files 
are located in each of the iteration directories. Within each IMAGE iteration directory three of the files created are of particular  
interest. These files include the following:
 ● new.fa: the set of updated contigs created during the current gap-closing iteration.
 ● new.read.placed: maps contigs to scaffolds for the current iteration.
 ● walk2.summary: gives a short description of the gap-closing results for each iteration, including the number of gaps in the  
assembly, the number closed during the current iteration and contigs that have been extended from one or both sides.
 ● After the first iteration, IMAGE creates a much smaller subset or partition of each of the initial FASTQ files. These new FASTQ files 
(‘partitioned_1.fastq’ and ‘partitioned_2.fastq’) only contain those reads that are involved in spanning gaps (i.e., read pairs that map 
to the middle of contigs are removed). When the initial FASTQ files are very large, using the partitioned FASTQ files can substantially 
reduce the execution time.
IMAGE provides scripts that summarize the output from all iteration directories (i.e., the gaps closed, extended and so on) and that 
rescaffold the final set of contigs (‘image_run_summary.pl’ and ‘contigs2scaffolds.pl’).

In the base IMAGE directory, when IMAGE is executed using the ‘-scaffolds’ option, the following input files for IMAGE are  
automatically created:
 ● read.placed.original: maps contigs to scaffolds for the initial FASTA file (that contains sequences with gaps to be closed).
 ● read.placed: may rename the contigs and scaffolds in the read.placed.original file if they contain problematic characters.
 ● contigs.fa.original: contains the initial set of contig sequences in FASTA format.
 ● contigs.fa: may rename the contig headers in the contigs.fa.original file if they contain problematic characters.
 crItIcal step If another run of IMAGE is started using the ‘image.pl’ script in the same directory as an existing IMAGE run, then it 
is important to first delete the automatically created input files because IMAGE will not overwrite them. Please note that the  
recommended way to continue an existing IMAGE run is via the ‘restartIMAGE.pl’ script: it is not necessary to delete any files before 
running this script.
?  trouBlesHootInG
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‘image_run_summary.pl’ script, which has only one argument: the prefix of the output directories. To run the script type, 
the following two commands in a terminal window:
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl ite

? trouBlesHootInG

23| (Optional) If the output of IMAGE shows that gaps are still being closed, or if contigs are still being extended, then it 
may be worth running some more iterations. To restart IMAGE from iteration 9, with a k-mer size of 31, for 3 more iterations, 
type the following into a terminal window:
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite9 31 3 partitioned

24| Once IMAGE has completed its run, the contigs that are found in the file ‘new.fa’ under each iteration directory may  
be output as scaffolds using the ‘contigs2scaffolds.pl’ script. See Box 6 for further detail about IMAGE output. The final 
iteration directory (i.e., the directory with the highest number appended to its prefix name, e.g., ‘ite9’) gives the most 
contiguous set of contigs. The arguments given to the ‘contigs2scaffolds.pl’ script are as follows: ‘new.fa’ is the file contain-
ing the set of contigs for the final iteration; the file ‘new.read.placed’ gives the scaffolding information for the new contigs 
based on the initial set of scaffolds; the number ‘300’ gives the gap between contigs in the scaffold (denoted by NNs in the 
output file); ‘0’ gives the minimum size for contigs to be included in the scaffolds output file; and ‘scaffolds’ is the prefix of 
the output scaffolds file, which will be in FASTA format. Type the following three commands in a terminal window to change 
to the final iteration directory, to view the usage information for the script ‘contigs2scaffolds.pl’ and to run the script:
$ cd ite9
$ perl $PAGIT_HOME/IMAGE/contigs2scaffolds.pl
$ perl $PAGIT_HOME/IMAGE/contigs2scaffolds.pl new.fa new.read.placed
300 0 scaffolds

! cautIon In some applications, we have observed small contigs (≤500 bp) generating missassemblies by duplicating  
their sequence.

running Icorn ● tIMInG 1–2 h per iteration
25| Set up a working directory for ICORN, and link in the files containing Illumina reads by typing the following five  
commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runICORN
$ cd runICORN
$ ln -s /path/to/pairedReadsPart_1.fastq .
$ ln -s /path/to/pairedReadsPart_2.fastq .

 crItIcal step ICORN can also be used to find high-quality variants as described in Box 7.

26| Link in the assembly to be corrected. This could be the output from ABACAS (from Step 17) or IMAGE (from Step 24), or 
the sequences output from a de novo assembly. Type the following command into a terminal window:
$ ln -s /path/to/assembly ./uncorrected.fasta

27| First, check the ICORN usage information and view basic help. The arguments to ICORN are as follows: the first is the 
FASTA file of the sequence to be corrected; the second and third specify the first and last iterations; and then come the  
Illumina read file or files used to make the corrections. For paired-end reads, a number of libraries can be used. A file is 
specified for each half of the pair, followed by an estimation of the range of the insert size for the paired reads and the 
mean insert size range; if another paired-end Illumina library is available, then this is specified in the same way. If a single-
end library is available, then the insert size arguments are missed out. Type the following command in a terminal window:
$ icorn.start.sh

28| Run ICORN with the required parameters. Choose one of the following options, depending on the available Illumina  
libraries. Use option A to call ICORN with one paired-end library, option B if two paired-end libraries are available or option C  
if only one single-end Illumina library is available:
(a) to call Icorn with one paired-end library (with an insert size of 250 bp)
 (i)  Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 pairedReadsPart_1.fastq  
pairedReadsPart_2.fastq 100,500 250
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(B) to call Icorn if two paired-end libraries are available (with insert sizes of 250 and 3,000 bp)
 (i)  Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 ApairedReadsPart_1.fastq  
ApairedReadsPart_2.fastq 100,500 250 BpairedReadsPart_1.fastq  
BpairedReadsPart_2.fastq 2000,4000 3000

(c) to call Icorn if only one single-end Illumina library is available
 (i)  Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 unpairedReads.fastq

 crItIcal step If you have long insert-size libraries, it might be necessary to reverse-complement the reads before  
performing the mapping.

29| At the end of an ICORN run, three small files may be consulted to view how ICORN has performed: the ‘ICORN.overview.
txt’ file has a general overview; the ‘Stats.Mapping.csv’ file shows the improvements in the number of reads that map to the 
sequence after each iteration; and the ‘stats.Correction.csv’ file gives the numbers of corrections made for each iteration. For 
further detail, please see Box 8. To view the contents of these files, type the following three commands in a terminal window:
$ more ICORN.overview.txt
$ more Stats.Mapping.csv
$ more Stats.Correction.csv

! cautIon ICORN cannot correct regions where no reads map uniquely. Double-check the ‘Stats.Mapping.csv’ to ensure that 
the percentage of the genome is covered to at least 20×. 
! cautIon If you work with haploid genomes, then SNPs called as heterozygous by ICORN might be misassemblies consisting 
mostly of larger insertions and deletions or collapsed repeats. 
 crItIcal step Further ways of evaluating the consensus sequence are given in Box 2.
? trouBlesHootInG

30| (Optional) In the file ‘ICORN.overview.txt’, the errors corrected by ICORN in the last iteration are listed. If errors are still 
being corrected, then it might be advisable to run further iterations. The call is as before, just changing the start and end 
iteration:
$ icorn.start.sh uncorrected.fasta 7 9 pairedReadsPart_1.fastq pairedReadsPart_2.fastq 
100,500 250

! cautIon Only a single instance of ICORN should be run at a time in a directory (to avoid different instances simultane-
ously accessing the same files). 
 crItIcal step Around 85% of the errors are corrected in the first iteration. Most errors in the coding regions are  
corrected in the first two iterations.

31| (Optional) It is recommended to view the corrections made by ICORN in a genome browser such as Artemis. The file 
‘All.Reference.gff’ will show the corrections projected onto the original sequence; see Box 8 for a description of the  

 Box 7 | Using ICORN to find high-quality variants ● tIMInG ~6 h 
1. Set up a working directory for ICORN and link in the files containing Illumina reads and the sequence to be investigated for variants 
by typing the following six commands in a terminal window:
$ cd /path/to/myWorkingDir

$ mkdir runICORN

$ cd runICORN

$ ln -s /path/to/pairedReadsPart_1.fastq .

$ ln -s /path/to/pairedReadsPart_2.fastq .

$ ln -s /path/to/sequence.fasta ./uncorrected.fasta

2. Call ICORN by typing the following commands in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 pairedReadsPart_1.fastq pairedReadsPart_2.fastq 

100,500 250

3. Check the output file ending in ‘.PerBase.stats’ to obtain a list of the variants that ICORN found for each iteration. This is described 
in Box 8.

4. (Optional) If the results are satisfactory, the ICORN output can be removed. Delete all the directories generated by ICORN by typing 
the following command in a terminal window:
$ rm -r Reference.*/
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ICORN’s output. To look at the final version of the correction, open Artemis with the ‘Final.ICORN.fasta’ file, and open the 
perfect-mapping plot for the ‘PerfectMappingPlot’ directory. By right clicking on the graph, one can generate regions with 
no coverage that were not corrected. The rest, as reported in the ‘ICORN.overview.txt’ file, should be perfect sequence.  
The following command will open Artemis with the corrections. Once it is open, you can load the plot files from the  
‘PerfectCoverageplots’ directory:
$ art uncorrected.fasta  +  All.Reference.gff

32| (Optional) If the file ‘uncorrected.fasta’ contains more than one sequence, then it is necessary to index the FASTA file, so 
that Artemis can select between the different sequences in the file:
$ samtools faidx uncorrected.fasta

! cautIon Systematic errors in Illumina reads around homopolymer tracks15 will cause ICORN to incorrectly identify heterozygous 
SNPs. Strand-specific motif errors are another potential source of error, but so far such errors have not been observed in ICORN.

running ratt to transfer annotations from a reference genome ● tIMInG 60–90 min
33| Set up a working directory for RATT by typing the following three commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runRATT
$ cd runRATT

 Box 8 | Output interpretation for ICORN 
If ICORN runs to completion, there will be a directory for each ICORN iteration. The names of these directories are based on the  
original sequence file, with a number appended to the original file name corresponding to each iteration.

In the main ICORN working directory, there are two important files to look at after a run:
1. Stats.Mapping.csv: statistics based on the number of reads mapped (including read-pairs and unique mappings), the depth of 
genome coverage of the mapped reads, and how the genome size may change as corrections are made because of small insertions and 
deletions. There is a separate column of results for each ICORN iteration.
2. Stats.Correction.csv: a breakdown of the different types of correction made by ICORN. A separate column is given for each ICORN 
iteration. The types of correction made by ICORN are as follows:
 ● SNP: the correction of a single nucleotide or base pair
 ● INS: insertion of up to 3 bp in order to fix an incorrect deletion
 ● DEL: removal of up to 3 bp in order to fix an incorrect insertion
 ● HETERO: If a second allele is called with a frequency between 0.15 and 0.5, the base is called heterozygous. The consensus  
sequence is derived from the most abundant allele.
 ● Three types of corrections (SNP, INS and DEL) that are themselves corrected (i.e., rejected) as the coverage of mapping reads 
increases. The corrections are labeled as Rej.SNP, Rej.INS and Rej.Del.
To see a summary of the ICORN results, look at the file ‘ICORN.overview.txt’. This file contains basic information on the corrections and 
the coverage of mapping reads. It is a short summary of the above two files, including the amount of corrections per iteration and the 
amount of base covered with perfect-mapping reads.

Around 90% of the reads should map, depending on the quality of the Illumina input files and the draft genome. For read pairs, the 
amount of uniquely mapped read pairs should be 60–80%, although a repeat-rich genome may reduce this substantially. If a newly 
generated draft genome is used, then this number may drop to around 40%, as most read pairs will lie on different contigs. Only  
regions covered with 20× mapped reads will be corrected.

By using a genome browser such as Artemis and the GFF files output by ICORN, it is possible to view the corrections made for each 
sequence (contigs or scaffold) in the uncorrected input file. GFF files are made at each iteration, and at the end of the iterations these 
files are combined into a single file (for each contig or scaffold). The naming convention for these files is as follows:
 ● At each iteration, the GFF files are made from three components joined together using a ‘ . ’: the initial uncorrected sequence name 
(e.g., ‘uncorrected.seq’), the iteration number (e.g., 1) and the contig or scaffold name (e.g., ‘ctg0001’). In this case the GFF would be 
called: ‘uncorrected.seq.1.ctg0001.gff’
 ● The final GFF files are constructed using a prefix ‘All’ joined to the contig name, e.g., ‘All.ctg0001.gff’

Other important files written to the base ICORN directory include the following:
 ● The FASTA file of the corrected sequence that is written at each iteration. The name of this file is based on the original sequence 
file, with a ‘.’ and a number appended to original file name corresponding to each iteration. It is found in the base directory of ICORN.
 ● At each iteration, the file with the ending ‘PerBase.stats’ gives a list of all the different high-quality variants that ICORN found. The 
format of this file is as follows: column one, sequence name (usually a contig or scaffold); column two, base position of the variant relative to 
the initial uncorrected sequence; column three, type of variant (SNP, INS, DEL and so on); and column four, corrected base of the new variant.

The directory ‘PerfectCoverageplots’ contains files giving the coverage for each base. This is just a single column of numbers giving 
the coverage, starting at base 1. These files can be loaded into Artemis.
?  trouBlesHootInG
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 crItIcal step Before you run RATT, you may need to adapt the setting in the file $RATT_CONFigure. Use the command 
‘echo $RATT_CONFIG’ to get the position of the file, and then open it in an editor. If necessary, adapt the triplets for start 
and stop codons, specify splice sites and tell RATT not to correct pseudogenes. Note that example config files are given in 
the RATT home directory (‘$PAGIT_HOME/RATT’).

34| Make a directory for the EMBL files (see Step 7 for help with converting annotation files between formats), and link in 
the files containing the reference genome annotation to that directory by typing the following three commands in a terminal 
window:
$ mkdir EMBL
$ cd EMBL
$ cp -s /path/to/Refannotations/*.embl .

! cautIon The quality of the annotations generated by RATT is highly dependent on those in the reference annotations.  
See also Box 9 for the RATT transfer options.

35| Return to the RATT working directory by typing the following command in a terminal window:
$ cd ..

36| Link in the assembly to be annotated. This could be the output from ABACAS (from Step 17), IMAGE (from Step 24) or 
ICORN (from Step 29), or the sequences output from a de novo assembly. Type the following command into a terminal  
window:
$ ln -s /path/to/assembly ./unannotated.fasta 

37| Check the RATT usage information and view basic help (see also Box 9 for an explanation of the RATT transfer  
parameters), and then run RATT with the required parameters by typing the following commands in a terminal window:
$ start.ratt.sh

38| Run RATT with the following arguments: the directory containing the annotations that are in EMBL format; the  
unannotated query file; the output prefix; and finally the type of annotation transfer. Use option A to transfer from a  
different strain, option B to transfer from a related species or option C to transfer multiple annotations from more than  
one strain or species:
(a) annotation transfer from a different strain
 (i)  (Optional) Type the following command in a terminal window:
$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Strain > ratt.output.txt

 Box 9 | RATT transfer parameters 
It is important to choose the correct transfer parameter when using RATT. It influences the speed and accuracy in NUCmer, the  
insertion of ‘Faux-SNPs’ (temporary modifications to SNPs) and the synteny identification process. It is always worth running RATT with 
different parameters to see whether the annotation improves. Further information on this is available; see the table under the RATT tab 
on PAGIT webpage (http://www.sanger.ac.uk/resources/software/pagit/).

There are three main parameter sets to use: ‘Assembly’, ‘Strain’, and ‘Species’. ‘Assembly’ is used to transfer between different assem-
blies of the same isolate. ‘Faux SNP’ are included in the ‘Assembly’ and ‘Strain’ parameters.

These three parameter sets can be extended with two further settings. The first extension, ‘.Repetitive’, is used if the reference has 
many repetitive regions. This will extend the execution time. For example, when transferring annotation between different strains, the 
‘Strain’ parameter becomes ‘Strain.Repetitive’. The second extension, ‘.Global’, is used if the query sequence does not have many gaps or 
rearrangements when compared with the reference.

The ‘Multiple’ parameter set is used to transfer annotation from multiple references. Finally, there is the ‘Free’ parameter for advanced  
users who wish to set their own parameters. This is further explained in the RATT SourceForge documentation: http://ratt.sourceforge.net/
documentation.html

A comprehensive list of all the available transfer parameters is as follows:
 ● ‘Assembly’, ‘Assembly.Repetitive’,
 ● ‘Strain’, ‘Strain.Global’, ‘Strain.Repetitive’, ‘Strain.Global.Repetitive’,
 ● ‘Species’, ‘Species.Global’, ‘Species.Repetitive’, ‘Species.Global.Repetitive’,
 ● ‘Multiple’
 ● ‘Free’

http://ratt.sourceforge.net/documentation.html
http://ratt.sourceforge.net/documentation.html
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(B) annotation transfer from a related species
 (i)  (Optional) Type the following command in a terminal window:
$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Species > ratt.output.txt

(c) Multiple annotation transfer from more than one strain or species
 (i)  (Optional) To use RATT with multiple reference annotations, set up RATT as in Step 33, but ensure that all the  

reference genome EMBL files have been placed in the EMBL file directory. Thereafter, type the following command in a 
terminal window:

$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Multiple > ratt.output.txt

39| Check RATT output. See Box 10 for details of the output files. 
 crItIcal step If the amount of synteny between the sequences is low and not many genes were transferred, then try 
rerunning RATT with another parameter such as ‘Strain.Global’ or ‘Species.Global’ (Box 9).
? trouBlesHootInG

40| Manually view the output using ACT. Type the following command in a terminal window:
$ art myPrefix.queryname.final.embl  +  Query/myPrefix.queryname.Mutations.gff 
Alternatively, if the annotation comes from several references (see Step 38C), it is not possible to use ACT, in which case it 
is possible to analyze the data with Artemis instead.

 crItIcal step To see from which reference the annotation was transferred, look up the systematic_ID or locus_tag of the 
gene models. This unique identifier normally has the abbreviation of the reference in the name. 
 crItIcal step Please note that commands for starting the genome browser Artemis with the annotated sequences are 
printed as part of RATT’s standard output.

41| (Optional) To analyze which features were not transferred, load the results into ACT. Generate a new BLAST comparison 
file with the updated sequence by typing the following two commands in a terminal window:
$ formatdb -p F -i Refsequence.fasta
$ blastall -p blastn -m 8 -e 1e-40 -d Refsequence.fasta -i Sequences/myPrefix.queryname 
-o prefix.blast

42| (Optional) Start ACT with the following command:
$ act EMBL/Refannotations.embl prefix.blast myPrefix.queryname.final.embl

 Box 10 | Output interpretation for RATT 
RATT standard output gives an overview of the results: for each sequence, the number of synteny regions is given, and then statistics 
on the transferred features and CDS are also given. After the transfer, each gene with an incorrect start or stop codon is reported, as 
well as whether RATT could fix it in the correction step. We recommend redirecting the RATT standard output to a file.

There are two types of output file for RATT: a number of files that refer to the initially unannotated file, including a general report file,  
and a number of files that refer to the reference file from which the annotations are being transferred.

The most general report file is ‘userPrefix.fastaHeader.Report.txt’. It gives information on syntenic regions, annotation correctly trans-
ferred, and information on incorrectly transferred gene models, with some instructions about how they might be corrected for the query.

Output files from RATT that refer to the initially unannotated query file are constructed by combining an output file prefix that is set 
by the user, with the FASTA headers from the query file (each sequence in the query file is annotated separately) and a file ending that 
identifies each output file. The files for the reference (annotated genome) are as follows:
 ● userPrefix.fastaHeader.embl: these are all the potential annotations.
 ● userPrefix.fastaHeader.final.embl: these are the corrected annotations and any annotations that could not be corrected. They also 
contain the sequence.
 ● userPrefix.fastaHeader.Report.gff: gives information on where RATT has been able to correct CDS models or not. RATT looks at start 
and stop codons, splice sites, frameshifts and joined exons.
 ● In the ‘Query’ directory, the file: userPrefix.fastaHeader.Mutations.gff. This file gives details of regions that could not be transferred be-
cause there was no synteny, because insertions or deletions were present, or because there was low sequence similarity or identical repeats.

The output files that refer to the annotated genome (the reference) are constructed by combining the prefix set by the user with the 
prefix of the reference EMBL file and with a file ending identifier. The files for the annotated genome or reference are as follows:
 ● userPrefix.EMBLprefix.NOTTransfered.embl: annotations that were not transferred.
 ● In the ‘Reference’ directory, the file: userPrefix.EMBLprefix.Mutations.gff. The contents of this file are described above.
?  trouBlesHootInG
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43| (Optional) In ACT, include into the reference sequence (top window) the file ‘myPrefix.referencename.NOTTransfered.
embl’, as well as the file ‘Reference/myPrefix.referencename.mutations.gff’, by selecting File→Reference name (2nd line)→
Read an Entry. Onto the query you can include the file ‘Query/myPrefix.queryname’ by selecting File→Query name (3rd line)→ 
Read an Entry. Choose the ‘one line per entry’ option by right-clicking on the genome sequence of the reference. Now it is 
possible to analyze which models were transferred, which regions have no synteny (and therefore no transferred annotations),  
and where variants between the two genomes exist. 
 crItIcal step It is very important to analyze the regions of sequence that have no synteny to the reference, because 
in those regions no annotation is transferred. On such sites, an ab initio prediction could be done: these genes might be 
unique3. It is also important to analyze the sequence from the ABACAS bin, which will be individual EMBL files. 
 crItIcal step Gene models that failed to transfer may indicate deletions in the unannotated sequence or low similarity 
regions and should be manually inspected.

? trouBlesHootInG
Troubleshooting advice can found in table 2.

taBle 2 | Troubleshooting table. 

step problem possible reason solution

10 and Box 3 ABACAS is running 
slowly

The sequences being compared are 
large, and ABACAS is conducting a 
search (via the alignment software 
NUCmer or PROmer) that is much 
finer and more sensitive than is 
necessary

It may be faster to use the ‘-d’ option in ABACAS. This 
option uses the default options for PROmer or NUCmer 
(it turns off sensitive mappings). Type the following 
command in a terminal window:  
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r 

Refsequence.fasta -q assembly.fasta -p 

nucmer -d -b -o myPrefix

12 and Box 4 The contig alignments 
output from ABACAS are 
less than hoped for

The reference genome is highly 
divergent when compared with the 
assembly

Various parameters can be used to optimize the align-
ment process. These include ‘-i’ for the minimum 
percentage identity (the default is for 40% sequence 
identity between the mapped sequence and the refer-
ence); ‘-v’ for the minimum sequence coverage (i.e., 
proportion of a contig matching to a reference; the 
default is that 40% of the sequence should be mapped 
to the reference); and ‘-s’ to change the minimum 
length of a matching word in NUCmer or PROmer (the 
defaults are 12 and 4, respectively). They can be used 
by typing the following command in a terminal window:  
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r 

U00096.fna -q contigs.fa -p nucmer -s 

10 -m -b -i 25 -v 30 -o myPrefix

22 and Box 6 The summary of IMAGE 
results given in the out-
put file ‘walk2.summary’ 
show that all results 
for gap closing, and 
extended contigs, and 
so on is zero

The k-mer parameter specified 
in the IMAGE command line 
arguments is used by the Velvet 
assembler

If the k-mer parameter is longer than the length of the 
reads used for gap closing, Velvet will be unable to pro-
duce any assemblies at all. Specify a shorter k-mer using 
the IMAGE command line

SMALT, The read alignment  
software used by IMAGE,  
may fail

Check the contents of the ‘sam’ directory in the first 
IMAGE iteration directory: if the ‘final.sam’ file is empty 
there is a problem with SMALT. Also, the actual smalt 
command used by IMAGE on your system, executed from 
the ‘sam’ directory, will be printed to standard output. Try 
executing this command manually to locate the problem

The Velvet assembly software  
may fail

Investigate the contents of the velvet*.auto directory 
in the (first) iteration directory. The velvet ‘Log’ file 
may indicate the problem. Also, some velvet messages 
get directed to standard output and these should be 
checked for possible problems

(continued)
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● tIMInG
Approximate timing information for PAGIT applied to a bacterial genome is given here. Please note that an experienced Linux 
user and genome assembler may run through these stages substantially more quickly, and that the time required to manually 
check the results depends very much on the genome being analyzed. These results assume the use of a machine with an Intel 
processor X5650 (2.67 Ghz).
Steps 1–7, obtaining and installing PAGIT: 15–45 min (including 10 min execution time when running the example)
Steps 8–17, running ABACAS to order contigs or scaffolds on a reference genome: allow up to 40 min (the execution time is 
just a few minutes, but it is advisable to spend 20 min or so manually checking the output)
Steps 18–24, running IMAGE to close gaps in scaffolds: ~6 h (IMAGE is much more computationally intensive than ABACAS 
and will require ~6 h of execution time—note that the first iteration is by far the longest. However, it should only take about 
15 min to set up the input files and get IMAGE running.)
Steps 25–32, running ICORN to correct small insertions, deletions and single base-pair errors: ~6 h (It will take about 15 min 
to set up the input files for ICORN; thereafter, allow 1 or 2 h per iteration and about 30 min to check the output. Note that 
both IMAGE and ICORN make most of their improvements in iterations 1 and 2.)
Steps 33–43, using RATT to transfer annotation from a reference genome: allow 90 min (The actual execution time should be 
less than 10 min, but it might take more time to locate the EMBL files on public databases and to check the output.)

taBle 2 | Troubleshooting table (continued). 

step problem possible reason solution

29 and Box 8 According to the con-
tents of the file ‘Stats.
Mapping.csv’, relatively 
low numbers of reads 
have mapped

The coverage of the available 
reads is not high enough

There is no solution apart from obtaining more reads

According to the con-
tents of the file ‘Stats.
Mapping.csv’, the 
number of uniquely 
mapped reads is mark-
edly lower than the 
number of mapped reads

ICORN may have been executed 
with the wrong the insert size

Rerun ICORN with a different (preferably correct) insert 
size

ICORN runs through very 
quickly, but nothing is 
corrected and low or 
zero genome coverage 
is reported in the file 
‘Stats.Mapping.csv’

It may be the case that SSAHA_
pileup crashed, possibly due to a 
lack of RAM; alternatively, a read 
commonly occurs more than once 
in the FASTQ file, which invariably 
leads into a crash of SSAHA_pileup

Obtain access to a machine with more RAM, or remove 
the problematic read(s) from the FASTQ file

39 and Box 10 Too few annotations are 
transferred

Reference and query might be  
too distant

The query sequence has significant insertions (or new 
plasmids) compared with the nearest reference genome  
If multiple genomes exist that may be used as a refer-
ence, then RATT is able to use the best regions of each 
reference strain to transfer annotations and the results 
are improved. See Box 9 for further information on RATT 
transfer parameters and Step 38C

The ‘*.final.embl’ files 
are empty even though 
the statistics say that 
gene models were  
transferred

Strange or nonstandard  
annotations in the reference  
annotation EMBL file

The most important regions to check are the lines that 
specify the positions of the features  
Edit or remove the nonstandard annotations

The results are incom-
plete or RATT did not 
run through all stages

The amount of RAM might not 
have been high enough

Obtain access to a machine with more RAM
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Box 3, using ABACAS for primer design: ~15 min
Box 5, using IMAGE to extend seed sequences into longer contigs: ~2 h (15 min to prepare the input files plus ~2 h of  
execution time)
Box 7, using ICORN for finding high-quality variants: ~6 h

antIcIpateD results
In this section, we show the output from the test example and present two further use-cases of PAGIT. Further details of 
how PAGIT was applied to these examples are given in the supplementary Methods. One of the use-cases involves a  
high-quality Illumina lane from E. coli. From the initial assembly of 182 scaffolds, PAGIT ordered 179 scaffolds on the 
reference genome, and IMAGE closed more than 60% of the 342 gaps and almost tripled the average contig size from 13.5 
to 39.9 kb. With this improved assembly, RATT was then able to transfer 99.47% of the gene models. The second use-case 
shows the potential of ICORN to correct 454 homopolymer track errors in a Chlamydia trachomatis assembly52. All genes 
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Figure 5 | Output of the PAGIT test script displayed in ACT. In this three-way view, different sequences are compared. On top is the ABACAS result, in the 
middle the reference genome (P. falciparum 3D7) and at the bottom the final sequence after the application of IMAGE, ICORN and RATT to the ABACAS output 
sequence. The orange boxes on the reference are gene models that were transferred by RATT onto the new sequence. In the top sequence the light blue 
box shows contigs ordered by ABACAS. The white boxes are sequencing gaps, subsequently closed by IMAGE. The small horizontal blue and green bars are 
sequencing reads mapped onto the sequences. Small red spots on the reads indicate base differences between the read and the sequence. The graphs show the 
logarithm of the perfect-mapping read coverage. The vertical red bars are BLAST similarity hits between the sequences.
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that had frameshifts as a result of homopolymer tracks could be corrected. In these examples, we used machines with an 
Intel processor X5650 (2.67 GHz).

the paGIt test example. The test data set is based on three contigs of a Plasmodium falciparum IT clone and the genome 
reference clone 3D7. The PAGIT test example (included in the distribution) is run as described in Steps 2 and 3, and it  
invokes all the PAGIT tools. It generates progress reports and a small amount of textual output. Once the script completes, 
ACT opens and displays the reads mapped in three ways: against the ABACAS output, the reference genome and the final  
annotated new assembly. The results should be similar to Figure 5.

the E. coli example. The PAGIT protocol was applied to a Velvet53 assembly created from reads for E. coli K-12 strain MG1655 
as described in the supplementary Methods. In table 3, we show the actual resource requirements in terms of memory, 
hard-disk space and timing for each different stage of PAGIT. The memory requirements are mostly quite modest, except for 
ICORN: here it is the SSAHA pileup pipeline that has the most demanding memory usage. IMAGE may be time consuming and 
may use a relatively high amount of disk space, but this depends on how many iterations are performed: most files can be 
deleted from earlier iterations, thus freeing up more disk space if required.

The standard output of ABACAS revealed that 179 sequences (in this case, scaffolds) were ordered against the reference 
genome, whereas three scaffolds were placed in the bin. On checking ABACAS output (Box 4), the file ‘U96mapped.gaps.
stats’ showed that 77 gaps were introduced because of overlaps and 102 real gaps were found: the sum of the gaps was  
73.1 kb, the largest gap was 4.9 kb and the average gap was 0.5 kb. Viewing the file ‘U96mapped.contigsInbin.fas’ revealed 
that the three unmapped scaffolds were in fact very small contigs of no more than a few 100 bp.

Figure 2 shows the number of gaps closed by IMAGE over 18 iterations, and Figure 3 shows how the average contigs size  
increases over these iterations. After each change of k-mer, there is a noticeable drop in the number of gaps and a  
corresponding increase in the average contig size. By the final iteration, the contig N50 was 81.5 kb, the average contig 
size was 39.9 kb and the largest contig was 221.6 kb. These contigs were rescaffolded using the IMAGE ‘contigs2scaffolds.pl’ 
script before the sequence was corrected using ICORN.

The ICORN output file ‘Stats.Mapping.csv’ (Box 8) shows that 99% of the reads mapped on the first iteration, and this did 
not change significantly for subsequent iterations. The file ‘Stats.Correction.csv’ shows that about 50 erroneous SNPs were 
corrected over six iterations, with 40 taking place in the first iteration. It is interesting to note that although the same 
reads were used for ICORN as for the assembly, errors were still found.

We used the scripts listed in Box 2 to check the coverage of perfectly mapping reads: 99.25% of the consensus sequence was 
covered by perfectly mapping reads. The low-coverage regions were converted to gaps, i.e., 4,645 bases were changed to Ns.

RATT standard output (Box 10) indicated that 1.28% of the cor-
rected assembly had no synteny with the reference genome. Of the 
4,320 gene models in the reference, 4,297 were correctly trans-
ferred, 22 were not transferred and 1 was partially transferred.

In table 4, we compare the results of correcting the  
E. coli assembly using PAGIT to the uncorrected results.  
The table is split into two parts. The upper part shows the 
results for all annotation elements and the lower part just 
for the coding sequences. Each part is broken down into 
those annotations that were: entirely transferred; partially 

taBle 3 | Requirements for RAM, hard-disk space and timing for 
each section of the protocol when applied to E. coli.

E. coli (genome size ~4.7 Mbp)

raM (Gb) Hard disk (Gb) timing (min)

ABACAS 0.02 0.008  <0.5

IMAGE 1.5 40 254 (ite 1)

20 per ite

ICORN 10.3 19 140 per ite

RATT 0.7 0.049 3
For IMAGE and ICORN, timing is given for each iteration (ite).

taBle 4 | Results for RATT, showing the annotations that can be 
transferred to the uncorrected assembly and to the PAGIT-corrected 
assembly. 

elements uncorrected corrected

All annotations 9,885 9,885

Transferred 9,711 9,800

Partially transferred 2 2

Split 188 0

Parts not transferred 175 85

Whole not transferred 172 83

Coding sequences

 All gene models 4,320 4,320

 Transferred 4,269 4,297

 Partially transferred 1 1

 Exons not transferred 1 1

 Whole not transferred 50 22
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transferred; split across scaffolds, parts of which were not transferred; and entirely not transferred. Compared with the  
initial assembly, the corrected assembly allowed 89 more annotations to be transferred from the reference, of which 28 were 
gene models. The uncorrected assembly also contains 188 annotations that were split across scaffolds: all these disappear in 
the corrected version because the initial scaffolds were mapped and ordered (using ABACAS) with the same genome sequence 
as that from which the annotations were derived.

To investigate why an annotation transfer failed, a screenshot from ACT is shown in Figure 6. The upper half of the screen 
shows the nontransferred annotations. The lower half of the screen indicates the transferred models (these are in blue and 
white). In this region, there is a break of synteny, as the sequence of the new assembly is smaller (yellow and pink block), 
with the result that the gene models of the reference could not be transferred (white region in the middle of the screen). 
Furthermore, this sequence matches several other regions in the reference genome, and thus it is likely to be a repetitive 
region, which should be further investigated.

In table 5, we give some assembly statistics to show how the first two stages of the PAGIT protocol are able to improve 
the initial assembly. ABACAS is able to map all but three of the initial scaffolds to the reference E. coli sequence, with the 
result that the assembly is now almost entirely contained within a single large scaffold. The ordering of scaffolds performed 
by ABACAS can be capitalized on by IMAGE. Indeed, there is a real possibility that IMAGE is able to close the gaps between 
adjacent scaffolds, as well as the gaps between the contigs comprising the scaffolds. The results of IMAGE are very good: 
the number of contigs is reduced by 66%, and their average size has almost tripled. When scaffolding the new set of contigs, 
IMAGE uses a standardized gap size between all contigs: this is the cause of the small discrepancy between the N50 scaffold 
sizes shown in table 5. Note that there are only four scaffolds, one of which is many orders of magnitude greater than the 
others. This means that in this situation the N50 size refers to the size of this single large scaffold.

C. trachomatis 454 assembly example. As a second example, we used a previous 454 assembly of C. trachomatis52. In this 
study, the authors manually corrected frameshifts due to homopolymer errors in the sequencing technology. We demonstrate 
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Figure 6 | Example of models in the E. coli example that were not transferred in RATT displayed in ACT. The top sequence is the E. coli reference, with models 
that could not be transferred, and the bottom sequence is the improved assembly with the transferred annotation. The selected box ‘Synteny‘ indicates that 
this region has no synteny with the references. This region is smaller in the new assembly. It is also likely to be repetitive because it has several BLAST hits 
(yellow lines) to other positions in the genome.

taBle 5 | Assembly statistics for the initial assembly and the first two stages of PAGIT.

no. of scaffolds n50 scaffolds no. of contigs n50 contigs av. contig largest contig

Velvet 182 70.3 338 33.4 13.5 116.4

PAGIT: ABACAS 4 4,659.5 338 33.4 13.5 116.4

PAGIT: IMAGE 4 4,626.7 115 81.5 39.9 221.6
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how PAGIT is able to automatically perform those manual corrections and generate a high-quality draft genome in less than 3 h,  
which is completely functionally annotated, including the identification of problematic regions. Further details of this exam-
ple are given in supplementary Methods.

ABACAS was able to map 7 of 18 of the 454 assembly contigs against the reference genome. These seven contigs cover most 
of the reference genome: the sum of all the gaps in the pseudomolecule was 7.5 kb, whereas the sum of the unmapped contigs 
was 20 kb. IMAGE was able to close all but one gap. ICORN corrected 2 single base errors, 24 insertions and 57 deletions.

As the focus of this example was to examine how ICORN can correct homopolymer tracks, we used RATT to transfer the annotation 
from the reference genome onto the uncorrected assembly and onto the PAGIT improved sequence so that we could compare the 
two annotations. Both transfers mapped all gene models completely. When mapping onto the uncorrected assembly, 45 gene models 
had frameshifts. When mapping onto the PAGIT assembly, only two genes initially had frameshifts, which were later corrected by 
RATT. The impact of ICORN’s corrections is indicated by the fact that RATT was able to immediately transfer 43 of the 45 models 
that were frameshifted in the uncorrected assembly. The two models that RATT corrected were output in Artemis-loadable GFF and 
tabulator files, ready for visualization and manual checking. Note that RATT is able to conserve the open read frame by splitting the 
gene model into two parts (Fig. 7). This is an advantage over ab initio methods that would generate two genes.

0.0

357600357300357000356700356400356100355800355500
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Figure 7 | View of an example of a frameshift in a gene model, visualized using ACT. At the top is one of the original 454 contigs, and at the bottom is the 
corrected sequence. In the 454 assembly, the gene model in the middle has a frameshift: an indel has broken the conceptual open reading frame. The top 
graph shows the logarithms of the coverage of perfect-mapping reads. Over this position there is a sink in the coverage, compared with the graph over the 
corrected sequence. Therefore, because of the change, the frameshift has been corrected.

Note: Supplementary information is available in the online version of the paper.
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