
©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1260 | VOL.7 NO.7 | 2012 | nature protocols

IntroDuctIon
The ultimate goal of many genome projects is to generate a gap-free
and fully annotated genome. Next-generation sequencing (NGS)
technology has greatly increased the throughput of DNA sequenc-
ing, and as a result the number of draft genomes deposited in public
databases has increased markedly. However, although the quantity
has increased, the quality of available genomes has suffered. This is
because it is essential to engage in a very time-consuming process of
manual editing and gap closure before a genome can be considered
to be a finished or gold-standard product1. For the human genome
project, the aspiration was to have a 1-bp error per 10 kb of finished
sequence2. In addition to generating accurate genome sequences,
genome annotation is an important and time-consuming aspect of
de novo genome sequencing projects. These projects aim to generate
high-quality annotated genomes that may be subsequently used as
reference genomes—thus facilitating the re-sequencing and anno-
tation of many related species through comparative methods3,4. For
the vast majority of NGS genome projects, the resources are simply
not available to generate high-quality annotated sequences, and
consequently many genomes may remain as poor-quality drafts.

In genome projects, the sequencing reads generated by the NGS
technologies are usually assembled using specialist software into
large numbers of contigs (please see the glossary of terms in Box 1).
Genome assembly is a very difficult computational problem, and
new approaches to assembly continue to be evaluated and devel-
oped5,6. Gaps, or discontinuities, in the sequence invariably remain
and are due to issues such as uneven sequence coverage, long
repeats, segmental duplications or technology biases. The resulting
draft assemblies are thus frequently highly fragmented, incomplete
and completely unannotated; regions of sequence within the draft
will suffer from misassemblies, contamination and low quality, and
the error rate will be much higher than 1 bp per 10 kb of assembled
sequence. Furthermore, the types of error can be influenced by
the characteristics of different sequencing technologies7,8. Although
draft genomes do contain useful information, they have substantial
limitations that may render complete and rigorous scientific analy-
ses difficult or impossible1,9.

In this protocol, we address these problems of genome qual-
ity through a pipeline of computational methods. Our protocol,

PAGIT, is concerned with refining, improving and quality-checking
the genome assemblies created using assembly software. When
sufficient sequencing reads are available, PAGIT aims to raise the
standard of the genome assembly from that of a ‘standard draft’
to one with features of a ‘high-quality’ or ‘improved high-quality
draft’, as defined by Chain et al.1. Such assemblies may still contain
misassembles, especially around repetitive areas, but many gaps will
have been closed, and the quality of the assembly is good enough
for gene discovery and comparative genetics.

PAGIT can be used for de novo assemblies or for reference-guided
assemblies. It consists of four open-source computer programs that
may be used either individually or together as a pipeline. PAGIT
can be set up to run in a fully automatic manner. However, genome
assembly is a complicated procedure, and it is highly advisable to
manually check the output at each stage of the pipeline and adjust
program parameters if necessary. PAGIT is therefore a semiauto-
matic computational method that aims to produce improved high-
quality draft genomes with minimum manual intervention.

Figure 1 shows how the four tools can be used to improve a
genome assembly. The tools provide complementary function-
ality and are used once a first draft assembly has been obtained
(we do not go into the detail of genome assembly here, as it has been
recently covered elsewhere10–12). Here we briefly introduce the tools
before explaining them in greater detail in subsequent sections:

(1) ABACAS (algorithm-based automatic contiguation of
assembled sequences) is a contig-ordering and orientation
tool that is guided by alignments against a reference13 (which
should have an amino acid identity of at least 40%). ABACAS
outputs readily visualized files and, if required, PCR-primer
sequences to close gaps.

(2) IMAGE (iterative mapping and assembly for gap elimination)
uses paired-end sequence information to extend contig ends
into gaps14.

(3) ICORN (iterative correction of reference nucleotides) enables
errors in consensus sequences, including small insertions and
deletions, as well as single base-pair errors, to be corrected by
iteratively mapping reads to the sequence15.

A post-assembly genome-improvement toolkit
(PAGIT) to obtain annotated genomes from contigs
Martin T Swain1,2, Isheng J Tsai1, Samual A Assefa1, Chris Newbold1,3, Matthew Berriman1 & Thomas D Otto1

1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK. 2Institute of Biological, Environmental and Rural Sciences, Aberystwyth University,
Penglais Campus, Aberystwyth, UK. 3Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK. Correspondence should be
addressed to T.D.O. (tdo@sanger.ac.uk).

Published online 7 June 2012; doi:10.1038/nprot.2012.068

Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies.
For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish
these genomes to a high standard. nowadays, this is not feasible for most projects, and the quality of genomes is generally of
a much lower standard. this protocol describes software (paGIt) that is used to improve the quality of draft genomes. It offers
flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes
(if available) in order to improve scaffolding and generating annotations. the protocol is most accessible for bacterial and small
eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. applying paGIt to an E. coli
assembly takes ~24 h: it doubles the average contig size and annotates over 4,300 gene models.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1261

(4) RATT (rapid annotation transfer tool) is a synteny-based
algorithm that transfers annotation in minutes from a refer-
ence genome (or genomes) onto the draft genome assembly16.

For a de novo assembly, IMAGE and ICORN both offer useful
functionality, and in some circumstances RATT may also be used.
For example, when a de novo assembly is updated and the annota-
tions are transferred from an earlier version of the genome to the
new version. For a reference-guided assembly, all four tools may
be suitable.

PAGIT is available from http://www.sanger.ac.uk/resources/
software/pagit/. This website also provides links to additional
information including documentation and source code for each
of the tools.

Where has the protocol been used?
The components of PAGIT were developed at the Wellcome
Trust Sanger Institute and have been applied to studies involv-
ing various parasites and pathogens, mostly involving small
to medium-sized genomes (from 1 Mb up to 400 Mb). In one
recent example, the protocol was used to aid the investigation
of genome evolution in 240 isolates of multidrug-resistant
Streptococcus pneumonia17, in which quick sequencing and
assembly of hundreds of bacterial genomes was necessary.

To accurately detect single-nucleotide polymorphisms (SNPs),
and to distinguish them from polymorphisms arising through
horizontal sequence transfer, the genomes needed to be highly
accurate. PAGIT was used as a pipeline to generate the high-
quality genomes that were compared to investigate genomic
plasticity and the evolution of drug resistance over short time
scales. In another study18, a high-quality reference genome
sequence for a strain of the human parasite Leishmania donovani
was created using the full protocol with a combination of 454
and Illumina sequencing technologies. This sequence was then
used as a reference to study variation in a set of 16 clinical lines
that differed in their responses to in vitro drug susceptibility. A
related paper19 used ABACAS and ICORN to generate a reference
genome for L. mexicana and refine reference genomes for three
other Leishmania species.

The protocol may be applied in a flexible manner. During de novo
assembly, in which no reference sequences are available, a subset of
tools from the protocol may be used. For instance, IMAGE can be
useful as a method of performing hybrid assemblies on the basis
of long and short read types—by using a paired-end Illumina read
library to fill the gaps in a capillary read or 454 assembly. A sub-
stantial update of the 360-Mb genome of Schistosoma mansoni used
IMAGE with Illumina reads to fill gaps in an assembly based on
capillary reads. As part of the finishing process, approximately 2,000

 Box 1 | Glossary of terms
alignment: the process of matching the order of bases between two or more DNA sequences so that the sequences map onto
each other.
annotation: identifying and ascribing functional descriptions to regions of the genome, including genes and coding sequences.
Base calling: the automated process of determining the nucleotide base at a position in a sequence.
Base quality: a confidence score assigned to each base call. Low scores indicate a higher chance that the base may have been
called incorrectly.
consensus sequence: during genome assembly, when overlapping reads have been combined to form a contig with sufficiently high
coverage, the most common base in the reads at each position is taken to be the consensus sequence.
contig: a contiguous sequence of DNA assembled from overlapping reads.
coverage: the number or depth of reads that cover (extend over) a section of DNA sequence.
De novo genome assembly: a genome assembly that is performed without referring to any existing genomes or reference sequences.
Draft genome assembly: a set of contigs and/or scaffolds generated by a computer program that attempts to reconstruct original
chromosomal sequences from sequenced reads. Draft genomes are frequently highly fragmented, unannotated and often contain
assembly errors such as collapsed repeats.
Finished genome: the chromosomal sequences have been determined to an accuracy of at least 1 error in 10,000 base pairs. All contigs
are placed in the right order and orientation along a chromosome with almost no gaps present. The sequence has been fully annotated.
Gaps: an unsequenced region of a scaffold that lies between two linked contigs.
Genome assembly: the process of using reads to reconstruct the original genome from which they were derived.
Insert size: the average or expected number of (unsequenced) bases that lie between paired-end reads as measured from their
outermost bases.
Indel: an insertion or deletion in a DNA sequence.
Mapping: aligning reads or other relatively short sequences to a longer sequence such as a finished genome.
n50: the length, for a set of different-sized sequences, such that 50% of the genome is contained in sequences of at least that length.
The larger the N50, the less-fragmented the genome.
paired-end reads or mate pairs: fragments of DNA sequenced from opposite ends of a larger fragment DNA that is of an approximately
known size. Mate-pair libraries refer to large insert libraries sequenced over the paired ends.
read: data produced by a DNA sequencing machine from reading an individual DNA template in one direction.
reference genome: a high-quality draft or finished genome used to anchor alignments. The features of the sequence should have been
annotated, and the contig length should be relatively long.
scaffold or supercontig: a portion of the genome sequence made by linking contigs together using paired-end reads. There will be
gaps between the contigs that compose the scaffold.
synteny: the conserved gene order that is observed along the chromosomes of different species.

http://www.sanger.ac.uk/resources/software/pagit/
http://www.sanger.ac.uk/resources/software/pagit/

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1262 | VOL.7 NO.7 | 2012 | nature protocols

of the gaps closed by IMAGE were visually inspected, and 90% of
these gaps were verified manually. RATT was subsequently used to
transfer the existing annotation to this new reference sequence20.
When generating the 74.5-Mb genome of the parasitic nematode
Bursaphelenchus xylophilus21 using a hybrid assembly approach
based on the 454 and Illumina sequencing technologies, IMAGE
and ICORN were used to close gaps and make corrections to the
assembly. A similar approach (IMAGE and ICORN) was used for
the 110-Mb genome of Hymenolepis microstoma, the mouse bile
duct tapeworm22 and for the bacteria Staphylococcus lugdunensis23.
In the case of S. lugdunensis, Illumina sequences were first assem-
bled using Velvet 0.7.62, and these contigs were then combined with
454 reads in an assembly produced using Newbler 2.1. The resulting
assembly consisted of 69 contigs in 9 scaffolds. IMAGE was then
used to close further gaps before ICORN was applied. In the final
assembly, all gaps were closed.

Individual components of PAGIT can be applied in isolation.
For instance, ABACAS is also a tool for primer design when finish-
ing genomes using PCR-based approaches24,25 and for comparing

contigs to a reference genome26. IMAGE
has been used independently to close gaps
in large hybrid de novo assemblies. For
instance, an initial assembly of the tsetse
fly Glossina moristans genome, produced
using Sanger and 454 sequencing reads, was
improved using IMAGE and several paired-
end Illumina libraries. The number of con-
tigs was reduced from 45,000 to 24,000, and
average contig length more than doubled
(the 360-Mb assembly is available at http://
www.genedb.org/).

Methods and algorithms
In the following paragraphs, we describe
each software package in turn, as presented
in Figure 1.

ABACAS: algorithm-based automatic conti-
guation of assembled sequences. ABACAS13
is designed to help with sequencing closely
related strains in which a high-quality refer-
ence sequence is available. By aligning contigs
against a reference sequence, using NUCmer
or PROmer from the MUMmer package27,
ABACAS orders and orients contigs and
estimates the sizes of gaps between them.
ABACAS outputs files to allow the contig
ordering to be visualized (for example, by
using ACT, the Artemis Comparison Tool20,28),
and within ABACAS primer sequences for
PCR-based gap closure can be designed
using Primer3 (ref. 29). ABACAS can show
ambiguous and overlapping contigs and can
be used with a genome browser to identify
and visualize repetitive regions.

A number of tools have been developed
for similar purposes: CONTIGuator30,
which helps find divergent regions in the
reference and the new genome; Projector2

(ref. 31) which is a web service application for closing gaps in
prokaryotic genome assemblies; and OSLay32, which requires
a mapping file to find synteny for a set of contigs. The program
r2cat (related reference contig arrangement tool33) is able to quickly
match a set of contigs onto a related genome, order them and dis-
play the result. It seems to implement a matching algorithm that
for microbial-sized genomes can be faster than NUCmer (which
is used in ABACAS), but unlike NUCmer, no results are presented
for larger genomes.

IMAGE: iterative mapping and sssembly for gap elimination.
IMAGE14 is an approach that uses Illumina paired-end reads to
extend contigs and close gaps within the scaffolds of a genome
assembly. It functions in an iterative manner: at each step it identi-
fies pairs of short reads such that one of the pair maps to a contig
end, whereas the other hangs into a gap. It then performs local
assemblies using these mapped reads, thus extending the contig
ends and creating small contig islands in the gaps. The process is
repeated until contiguous sequence closes the gaps, or until there

.fastq

.fasta Contig B

Illumina paired-end reads

Assembly sequences

ABACAS (ordering and orienting scaffolds)

Contig A
NNNN

Scaffold1

Contig C
NNNN

Scaffold3

Contig D

.fasta

.embl

Contig BContig A
NNNN NNNN

New gap

IMAGE (gap closing)

Contig C Contig DContig BContig A

Gap closed

ICORN (correction at nucleotide level)

RATT (annotation transfer from reference genome)

Contig E
Scaffold2

Contig C
NNNN

Contig D

Contig E (unordered)

Contig E

Contig C Contig DContig BContig A Contig E
NNNN NNNNNNNN

NNNN

1. Reads mapping

2. Local assembly

Contig end extendedGap remains open

Repetitive contig
3. Patching gaps

ATCGATGGTTGGA TG TGAATTCG TGGACGGTGAC

ns open

A TG
ATCGATGGTTGGA T G TGGACGGTGAC

CG TGGACGGTGAC ATCGATGGTTGGA T T
ATCGATGGTTGGA G T

C
C

ATCGATGGTTGGA T

G TGGACGGTGAC C

ATCGATGGTTGGA TG TGAATTCG TGGACGGTGAC T CG
ATCGATGGTTGGA T G TGGACGGTGAC

CG TGGACGGTGAC ATCGATGGTTGGA T T
ATCGATGGTTGGA T T

C
C

ATCGATGGTTGGA T

G TGGACGGTGAC C
TGAATTCG TGGACGGTGAC CA

 GATGGTTGGA TG T

Reference
Read mapping

More reads are mapped
With subsequent iterations

ATCGATGGTTGGA TG TGAATTCG TGGACGGTGAC T CA

Error

ATCGATGGTTGGA T G TGGACGGTGAC

CG TGGACGGTGAC ATCGATGGTTGGA T T
ATCGATGGTTGGA TT

CCC C C
C C C CC

G TGGACGGTGAC C

A

A

A

Read mapping

TGAATTCG TGGACGGTGAC CA

Updated reference

Final reference

NNNN

Perfectly transferred model Partially
transferred

Untransferred models

Synteny break identified

Synteny blocks

Initial assembly

Reference genome/chromosome

Gene models on reference sequence

Steps 8–17

PAGIT protocols

Steps 18–24

Steps 25–32

Steps 33–43

Figure 1 | Summary of the four components of PAGIT.

http://www.genedb.org/
http://www.genedb.org/

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1263

are no more mapping read pairs (see ANTICIPATED RESULTS and
Figs. 2 and 3 that show the effect IMAGE can have on the number
of gaps and the size of contigs in an E. coli assembly). IMAGE is
able to close gaps using exactly the same data set that was used in
the original assembly. This is because some read pairs that are too
repetitive to incorporate into a genome-wide assembly can often
be unambiguously aligned to a specific locus, such as a contig end.
Once read pairs have been sorted in this manner, they can be suc-
cessfully incorporated into local assemblies.

A gap-closing algorithm similar to IMAGE was incorporated into
the SOAPdenovo short read assembly program when it was used with
the panda genome. This algorithm was able to close most of the gaps
within scaffolds of the panda genome, leaving just 2.4% of the total
scaffold sequence unclosed: those gaps that were unclosed either con-
tained transposable elements (90%) or long tandem repeats34. Other
methods of gap closing involve comparing a collection of assem-
blies, perhaps generated with different assembly software or differ-
ent sequencing technologies, in order to identify ways of extending
contigs, merging or reconciling contigs and using contigs from one
assembly to bridge gaps in another. Such methods include the graph
accordance assembly (GAA) program35, Reconciliator36 and CloG37.

Once IMAGE has closed gaps in an assembly, it can be worth
attempting to calculate new scaffolding information for the new
contigs, as this may then define a new set of gaps for IMAGE to close.
There are a number of suitable scaffolding tools available. One of
the first scaffolding tools was BAMBUS38, which can be applied to
mammalian-sized genomes. More recently, scaffolding tools have
been developed that specifically use deep coverage of paired reads
from second-generation sequencing technologies. These include
the following: SOPRA39, which is designed to handle SOLiD data
sets for microbial genomes; SSPACE40, which scales to mammalian-
sized genomes; and Opera, which uses a graphical method to pro-
duce an exact solution to the scaffolding problem41.

In addition to improving whole-genome assemblies, IMAGE can
be used to assemble single genes of interest or to extend a known
PCR product. This is performed by generating an initial ‘seed’
sequence of at least 300 bp. IMAGE is then used to extend the
ends of the seed sequence. If the seed is initially placed like a small
contig island within a scaffold gap, it may eventually merge into
a larger fragment of sequence. The seed could also be a contig or
supercontig of interest, as long it is longer than 300 bp.

ICORN: iterative correction of reference nucleotides. ICORN15
is designed to identify and correct small errors in consensus
sequences, including errors from low-quality bases or homopoly-
mer errors from pyrosequencing42. ICORN cannot correct large
indels or other misassemblies in consensus sequences. Every
genome assembly algorithm has a unique error profile for indel
errors. In general, indel errors are minimized at the expense of con-
tig size, with aggressive assemblers generating long contigs that tend
to have the most indel errors5. ICORN works by iteratively map-
ping short reads against a consensus sequence to identify potential
single-base discrepancies or short insertions and deletions (up to
3 bp). Before a correction is accepted, ICORN checks that it will
increase the sequence accuracy by measuring the read coverage
of perfectly mapping reads at that position. If the coverage is not
decreased when the correction is incorporated, then it is likely that
the new sequence is correct. Either a user specifies a number of
iterations or ICORN continues until no new corrections can be
made. ICORN uses SSAHA to perform the mappings43; the SSAHA
pileup pipeline to call SNPs and small indels; and SNP-o-matic to
evaluate potential corrections with perfect-mapping reads44.

There are few alternatives to ICORN. Such methods include algo-
rithms to improve base calling45 or to detect frameshifts by protein
homology or by sequence analysis. Iterative mapping approaches
have been used earlier to derive a consensus genome sequence from
metagenomic sequencing data46, but as this derives from aggregated
sequences from an unknown number of starting genotypes, the
resulting consensus represents no single genome and hides much
of the diversity present in the original sequence pool.

There are additional ways in which ICORN can be used.
For example, it is possible to use ICORN to transform or morph a
reference sequence into the sequence of an aligned comparator
(e.g., reads from another strain or isolate) by ‘correcting’ the bases
over many iterations. Once ICORN has completed many iterations,
all the regions of the new consensus that have average read coverage
of perfect-mapping reads will represent the comparator sequence.
In contrast, those bases that are not well covered will be from the
original reference sequence and should therefore be masked out.
A disadvantage of this approach is that ICORN will only correct the
sequence for insertions and deletions of up to 3 bp. Performing a
de novo assembly is therefore necessary to find longer indels.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
um

be
r

of
 g

ap
s

IMAGE iterations

Figure 2 | The 182 scaffolds in the E. coli assembly contain 342 gaps after
being mapped to the reference genome. After 18 iterations of IMAGE, 223 of
the gaps have been closed.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 c
on

tig
 s

iz
e

(b
p)

IMAGE iterations

Figure 3 | The increase in the average contig size for a series of iterations
of IMAGE.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1264 | VOL.7 NO.7 | 2012 | nature protocols

Another application of ICORN is to find and confirm high-
quality sequence variation. ICORN improves on the functionality
available in the SSAHA pileup pipeline. In ICORN, each variant is
confirmed by perfectly mapped reads and checked and rechecked
over a number of iterations. Once the sequence is corrected, new
variants are often revealed that were initially obscured by the errors
present in the initial sequence, whereas the evidence supporting
other variants may have disappeared.

RATT: rapid annotation transfer tool. RATT16 was designed to
help annotate in three situations. It transfers annotation between
successive versions of a genome assembly, the genomes of closely
related species or the genomes of closely related strains. Transfers
are made from a high-quality reference to a new sequence by infer-
ring ‘orthology’ (or equivalency, in the case of successive assem-
bly versions) and hence gene function, guided by shared synteny
between the genomes. The sequences of specific genes may differ
between the genomes, and RATT therefore makes allowance for
features such as changes to start/stop codons, the length of genes,
splice sites or the presence of internal stop codons.

NUCmer from the MUMmer package27 is used to define the
sequence regions that share synteny (at least 40% sequence iden-
tity). These regions are filtered according to whether the annotation
is being transferred between species, strains or genome versions.
Although this function defines the synteny between blocks, it is not
enough to generate a 1-to-1 relationship between bases in the refer-
ence and query sequences. However, the ‘show-snp’ functionality
from the MUMmer package is designed for identifying polymor-
phisms, including insertions and deletions, and it is subsequently
used to refine the base-to-base relationships between the reference
and query sequences.

Ambiguity may be a problem when identifying indels in repetitive
regions. To overcome this, RATT recalibrates the adjusted coordi-
nates using SNPs (also identified using ‘show-snp’ from MUMmer)
as unambiguous anchor points within synteny blocks. However,
SNPs may be too rare for this if the sequences are very similar, in
which case RATT temporarily modifies the query by inserting a
faux SNP every 300 bp to aid in the recalibrating step: this change
is reversed later so that it does not affect the final result.

Having defined the synteny blocks, the mapping stage takes place
by associating each reference feature (from an EMBL file) with
coordinates in the new genome. Potential mappings are ignored
if a feature either (i) bridges a synteny break and its coordinate
boundaries match different chromosomes or different DNA strands
or (ii) if the newly mapped distance of its coordinates has increased
by more than 20 kb. However, if a short sequence from the begin-
ning, middle or the end of a feature can be placed within a synteny
region, mapping is attempted.

Useful output from RATT includes information on gene mod-
els that do not map cleanly; statistics about transferred features;
the amount of synteny between the reference and query; and
files that allow features of the genomes to be viewed in Artemis,
such as SNPs, indels and regions that lack synteny between the
compared sequences.

Although a number of other general automated annotation tools
or pipelines do exist, such as Ensembl47, GARSA48 or SABIA49, they
can be relatively complex and designed for large genome-sequencing
centers that have an extensive network of existing software pack-
ages, servers and bioinformatics experts. In addition, for microbial

systems there are additional specialized software resources such as
the integrated microbial genomes system50. RATT is much simpler
and more general than these approaches, and is therefore more
suited to the environment of a small laboratory.

Limitations and important requirements
In the flowchart shown in Figure 4, we give an overview of how
subsections of the PAGIT protocol may be applied to different
problems and list the corresponding steps from the PROCEDURE
section of this article. Table 1 summarizes the requirements that
dictate whether a component of the protocol can be applied. If the
requirement is not met, the respective component can be omitted
from the protocol.

In order for ABACAS to generate good results, the reference
genome must consist of longer and more contiguous sequences
than the assembly of the query genome. This will allow multiple
query sequences to align to a single reference sequence: the ideal
situation is a single reference sequence or chromosome onto which
many fragments from a query genome can be mapped, thus allow-
ing the relative order of the fragments, and the gaps between them,
to be defined. Preferably, the reference sequences should contain
fewer errors, and there should be an amino acid identity of at least
40% between the reference and query sequences.

Care should be taken to ensure that synteny is conserved between
the two genomes: they should be similar enough that intra-
chromosomal rearrangements are relatively minor; otherwise,
mapping sequences to the reference may place those sequences in
an incorrect order. This needs to be considered on a case-by-case
basis. Some bacteria, for example Wolbachia, are well known as
having mosaic genomes, in which substantial genomic rearrange-
ments occur between species: such genomes are not suitable for use
with ABACAS. Very short sequences (less than about 200 bp) are
difficult to place because insufficient detectable synteny will pre-
vent ambiguous mappings from being resolved. Rearrangements
between the reference and the query will be seen as long gaps,
or large regions without synteny.

If the query and the reference are very similar, then after run-
ning ABACAS all sequences should be ordered against the reference
genome. Furthermore, a minimal number of larger gaps is indica-
tive of a good-quality sequence ordering. The chances of a dele-
tion falling into a gap or of the assembler not joining the adjacent
sequences is dependent on the quality of the assembly: the fewer
the gaps in the initial assembly, the lower the chance that ABACAS
will introduce errors. ABACAS produces a statistics file that outputs
numbers of gaps, synteny information and ordered sequences. After
running ABACAS, it is advisable to check for large gaps between
mapped sequences or for a large quantity of unmapped sequences,
as these are indicative of a low-quality mapping.

Although the current implementation of ABACAS is designed
to run on reference genomes with a single chromosome, it can
also be used with genomes that have more than one plasmid or
chromosome (see PROCEDURE). ABACAS uses a sensitive version
of NUCmer/PROmer, which could take a long time to complete
for medium-sized genomes with large numbers of contigs. It is
therefore important to use the parameter ‘-d’ to avoid searching for
repetitive regions, which will improve run time without severely
affecting sensitivity. If you are running it on large genomes, it is
important to use the 64-bit version of PAGIT. The primer design
functionality of ABACAS generates high-quality primers on the

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1265

basis of the uniqueness and composition
of the sequence and may not always report
primer sets for some regions.

The requirements for IMAGE are con-
cerned with the availability of paired
Illumina sequences with at least 20× depth
of coverage. IMAGE closes the gaps between
contigs in scaffolds, and thus scaffolds are
an essential requirement. Scaffolds are a
standard output from most genome assem-
blers, including Velvet, Newbler and Celera,
and they may be created using stand-alone
software such as SSPACE40. Note that if the
reference genome of a closely related spe-
cies exists, then ABACAS can be used to
generate further scaffolding information
for IMAGE (by mapping the initial assem-
bly scaffolds to the reference genome).
However, it is important to check that the
scaffolding information is correct; otherwise, IMAGE may close
false gaps or may not close any gaps in the assembly. Depending
on the repetitive nature of the genome, assembly quality and the
coverage depth of the paired-end reads used by IMAGE, up to 50%
of gaps can be closed. When using Illumina data, IMAGE can only
run with paired reads with inserts of a few hundred base pairs.

ICORN will perform best if the coverage of the genome is between
20 and 60× and distributed evenly over the complete genome. In
this case, most of the bases will be successfully corrected, although
repetitive regions where reads cannot be mapped unambiguously
will not. General systematic errors in short reads are not possible to
correct. For example, long homopolymer tracks with more than ten
bases are often sequenced erroneously by Illumina technology15.

If a genome is larger than 6 Mb or if coverage exceeds 200×,
then ICORN might perform slowly and might need a relatively
large amount of memory (up to 15 GB). For a bacterial genome of
around 4 Mb in size, with 100× coverage, each iteration should take
less than an hour. Up to five iterations are typically performed, with
about 80% of the errors corrected in the first iteration.

RATT requires an annotated reference genome for its input. The
proportion of synteny between the reference genome and the new
genome corresponds to the proportion of genes that can be trans-
ferred. The sequence identity to transfer the annotation should be
over 40% for at least 50 bases upstream and downstream from the
annotated feature. Gaps in either the reference genome or the new
genome will adversely affect performance. For regions in which
no synteny exists, no transfer can be carried out, and the user will
then need to do ab initio gene finding and functional annotation3,
perhaps using gene prediction software such as Augustus51. Such
unannotated regions are flagged and written to a file that can be
loaded onto the new reference. For bacterial-sized genomes, RATT
uses around 1 Gb of RAM and runs in around 5–10 min, whereas
for malaria-sized genomes (about 23 Mb) it requires up to 6 Gb of
RAM and 10–30 min.

Scalability issues
PAGIT was designed mainly for working on parasite genomes
of up to about 300 Mb. In this protocol, we have emphasized its

taBle 1 | The essential input data and hardware requirements for each software tool in the protocol.

reference
genome needed?

paired-end
reads needed?

sequencing
technology

Genome size 4–25 Mbp Genome size several Gbp

raM (Gb) time Disk (Gb) raM (Gb) time (h) Disk (Gb)

ABACAS Yes No None Low 2–60 min Low 100 24 20

IMAGE No Yes Illumina Up to 2 8–48 H 50–100 8Para 120Para 500Para

ICORN No Preferred Illumina 10–60 5–72 H 10–100 NA NA NA

RATT Yes No None 2–6 2–30 min Low 100 4–12 5
Where ‘Low’ is given, the requirement is for much < 1 Gb of RAM or hard disk. Please note that for larger genomes it will be essential to use parallel versions of the tools. The superscript ‘Para’ indicates that
the requirements refer to the parallel version using about 100 CPU cores. NA, not applicable.

No

Reads

Assembly validation:
Box 2

Alternative applications

ABACAS: Box 3
PCR primer design

IMAGE: Box 5
Seeding contigs

ICORN: Box 7
Variant detection

Reference-based
assembly

ABACAS: Steps 8–17
Order contigs

ICORN: Steps 25–32
Error correction

IMAGE: Steps 18–24
Iterative gap closing

RATT: Steps 33–43
Annotation transfer

Final
assembly

Final
assembly

Assembly validation:
Box 2

IMAGE: Steps 18–24
Iterative gap closing

ICORN: Steps 25–32
Error correction

De novo
assembly

Yes

Reads

Is a
reference
genome

available?

Figure 4 | The basic workflow of the protocol
is shown for two common use-cases: for
de novo assembly and when a reference genome
is available. Some alternative applications of the
PAGIT components are indicated. Corresponding
steps from the PROCEDURE section are listed.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1266 | VOL.7 NO.7 | 2012 | nature protocols

applicability to smaller genomes, which can be worked on rela-
tively quickly and simply without the need for parallelization or
specialized computing infrastructure. However, it is worth noting
that the tools may be used on considerably larger genomes if such
infrastructure is available.

ABACAS and RATT both rely on MUMmer tools to perform
their alignments, and when run in the default 32-bit mode this
limits the size of the genomes being aligned to about 200–300 Mb.
However, when MUMmer is compiled in a 64-bit mode, this limi-
tation no longer applies—as long as enough RAM is available to
handle the larger genome alignments. To reduce the run time, it is
also advisable to use larger seeds in the alignments, which are con-
trolled via the ABACAS ‘-s’ parameter. For example, using ABACAS
to order contigs from an assembly of mouse chromosome 1 against
the complete mouse genome required almost 100 Gb of RAM and
took about 4 h. To transfer with RATT a subset of the annotation
of the human genome to the chimpanzee genome required 60 Gb
of RAM and took about 70 min. These tests were performed using
an Intel Xeon 2.40 GHz E7440 processor.

IMAGE and ICORN do not scale so easily in the serial implemen-
tations, as we have discussed in this paper. The IMAGE and ICORN
serial implementations are currently unsuitable for genomes larger
than about 25 Mb. Much of their limitation comes from the large
numbers of reads that need to be mapped. For small genomes, reads
can usually be mapped in hours using a single processor, but for

larger genomes this can take weeks, and then it is highly desirable
to speed up this process by using a high-throughput computing
resource. IMAGE is also limited by the numbers of gaps that must
be closed: many gaps means that many local assemblies must be
performed to close those gaps. Versions of IMAGE and ICORN that
are able to parallelize tasks via the Platform LSF cluster manage-
ment system are available from the SourceForge websites of these
tools (which are linked to from the PAGIT website). For the parallel
versions, IMAGE can scale up to genomes of gigabytes in size (it
has been used on mouse), and ICORN can be applied to genomes
of up to ~300 Mb.

Expected improvements
Sequencing technologies are rapidly evolving, and the tools com-
posing the PAGIT protocol are continuously under development
in order to adapt to those changes. In future, ABACAS should be
able to join two neighboring contigs, if they overlap with at least 50
bases and no mismatches. IMAGE will support newer sequencing
technologies such as the PacBio RS from Pacific Biosciences or Ion
Torrent, whereas improvements to ICORN will allow different tools
to be used to map reads and call variants (with considerably lower
memory requirements than the currently used SSAHA pileup pipe-
line). Finally, future developments for RATT are concerned with
accurately transferring greater numbers of genes between species
that are more distant.

MaterIals
EQUIPMENT
Hardware and software

The protocol is designed for a Linux environment. Depending on the
size of the target genomes, different requirements may arise, as discussed
in the preceding sections. For genomes of up to 200 Mb, a machine
with about 16 Gb of RAM and about 50 Gb of free disk space could be
sufficient. The whole pipeline should complete in about 1 d for microbial
genomes, or several days for larger genomes (a computer cluster may
be required)
There are two ways to run PAGIT: as Linux binaries (recommended) or as
a preinstalled Linux version running under a virtual machine. The virtual
machine can run under MAC OS or Windows and should be sufficient for ge-
nomes of up to 3 Mb. We have precompiled Linux and virtual machine versions

•

•

of PAGIT for 32-bit and 64-bit systems. The 64-bit virtual machine should be
able to access more RAM and may therefore be suitable for larger genomes
For the Linux version, a bash-shell must be running, and a tcsh-shell and
Java version 1.6 (http://www.java.com/en/download/manual.jsp) must be
preinstalled
For the virtual machine version, the virtual box software from VirtualBox
must be downloaded and installed. This process is well documented at
https://www.virtualbox.org/wiki/Downloads
PAGIT is available from http://www.sanger.ac.uk/resources/software/pagit/

Input data A genome assembly in FASTA format is essential. Also required is
one or more reference genome sequences in FASTA format, reference genome
annotations in EMBL format, and Illumina reads in FASTQ format (See
Table 1 for further details)

•

•

•

proceDure
obtaining and installing paGIt ● tIMInG 15–45 min
1| There are two recommended ways to install PAGIT, depending on the available operating system. Follow option A for
Linux or option B for Windows or MAC OS:
(a) linux
 (i) Download the appropriate compressed tar archive for your Linux system. Click on either the ‘Linux binary ×32bit’ or the

‘Linux binary ×64bit’ link from the ‘Download’ tab of the PAGIT website: http://www.sanger.ac.uk/resources/software/
pagit/.

 (ii) Move the compressed tar archive to the location where you want PAGIT installed, and then decompress the tar ball by
typing the following three commands in a terminal window:

$ mv PAGIT.V1.64bit.tgz /path/to/my/installed/software
$ cd /path/to/my/installed/software
$ tar xzf PAGIT.V1.64bit.tgz

 (iii) Execute the install script by typing the following in a terminal window:
$ bash ./installme.sh

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1267

 (iv) Switch to bash-shell:
$ bash

 (v) Source the environment settings to run PAGIT:
$ source PAGIT/sourceme.pagit
 crItIcal step The environment settings for PAGIT should be sourced each time PAGIT is executed. Alternatively, the
command ‘source PAGIT/sourceme.pagit’ may be included in your local environmental variable file (for example, the file ‘~/.
bashrc’) so that the PAGIT environment is automatically initialized.

(B) Windows or Mac os
 (i) If you have not done so already, download the VirtualBox software from VirtualBox and install it according the Virtual-

Box documentation: https://www.virtualbox.org/wiki/Downloads.
 (ii) Download the PAGIT virtual machine required for your Linux system. Click on either the ‘Virtual Machine 32 bit’ or

the ‘Virtual Machine 64 bit’ link from the ‘Download’ tab of the PAGIT website: http://www.sanger.ac.uk/resources/
software/pagit/.

 (iii) Register the downloaded PAGIT virtual machine. Open VirtualBox and click on new to create a new virtual machine.
Click on ‘next’ to move through the registration screens.

 (iv) Name the virtual machine (e.g., PAGIT) and select the operating system and version: ‘Linux’ and then either ‘Ubuntu’
or ‘Ubuntu64’.

 (v) Specify the amount of memory to be allocated. You should not give the virtual machine more than 75% of the
complete memory available, but it should have at least 2 GB.

 (vi) Specify the virtual hard disk using the toggle on the ‘use existing hard disk’ option and click on the file icon to find
and select the downloaded PAGIT virtual machine. (‘Start-Up Disk’ should be enabled.)

 (vii) To start the virtual machine, select it and click on the green arrow.

2| Running the PAGIT test example. Move to the PAGIT test example directory by typing the following in a terminal window:
$ cd $PAGIT_HOME/exampleTestset/

3| Run the test by typing the following in a terminal window:
$ bash ./dotestrun.sh

4| Initial setup of input files. Make a working directory for PAGIT. Type the following command in a terminal window:
$ mkdir myWorkingDir

5| Either copy the initial assembly or, to make a symbolic link from it to the working directory, type the following
two commands in a terminal window:
$ cd myWorkingDir
$ ln -s /path/to/assembly/scaffolds.fasta ./assembly.fasta

 crItIcal step Before proceeding with assembly improvements, it may be worth validating the quality of the initial
assembly. Methods to achieve this are given in Box 2.

6| Copy the read libraries, the reference genome sequence and the reference genome annotation; alternatively, to link them
to the working directory, type the following four commands in a terminal window:
$ ln -s /path/to/reads/readLibraryPart_1.fastq .
$ ln -s /path/to/reads/readLibraryPart_2.fastq .
$ ln -s /path/to/reference/Refsequence.fasta .
$ ln -s /path/to/reference/Refannotations.embl .

7| (Optional) Find reference annotations online through searching the ‘Genome’ database at the NCBI (http://www.
ncbi.nlm.nih.gov/genome/), and then convert the NCBI annotations, which are in GenBank format, to EMBL format.
There are a number of ways to convert annotations (one easy way is to load the GenBank file into Artemis and save
it as an EMBL entry, but here we use a bioperl script available from the RATT website to perform the conversion).
There are two arguments to the script: the first is the GenBank annotations, the second the output file with the an-
notations in the EMBL format:
$ genbank2embl.pl Refannotations.gbk Refannotations.embl

 crItIcal step Alternatively, annotations are stored at the EBI (http://www.ebi.ac.uk/) in EMBL format with the same
accession numbers as used by the NCBI.

http://www.sanger.ac.uk/resources/software/pagit/
http://www.sanger.ac.uk/resources/software/pagit/
http://www.ncbi.nlm.nih.gov/genome/
http://www.ncbi.nlm.nih.gov/genome/

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1268 | VOL.7 NO.7 | 2012 | nature protocols

running aBacas to order contigs or scaffolds on a reference genome ● tIMInG up to 40 min
8| Set up a working directory for ABACAS, and link in the files containing the genome assembly and the reference genome
by typing the following five commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runABACAS
$ cd runABACAS
$ ln -s ../assembly.fasta .
$ ln -s ../Refsequence.fasta .

 crItIcal step ABACAS can also be used for primer design, as described in Box 3.

9| (Optional) If there are multiple chromosomes, plasmids or other sequences in the reference file, then, before ABACAS is
executed, these must be joined in such a manner that they appear to be a single reference sequence. After the alignment,
the mapped contigs can be subdivided according to the reference sequences they were mapped against (Step 11). Type the

 Box 2 | Assembly validation using ICORN and Artemis
Genome assembly algorithms often misassemble fragments of a genome5,9. Many of these mistakes cannot currently be corrected
automatically; however, software for evaluating and identifying potential misassemblies has been developed54. Here we describe a few
ways in which ICORN and Artemis can be used to check and evaluate the consensus sequence:

1. The following approach can be used to check whether certain regions in the genome are not covered by perfectly mapping reads
(a read and its mate are considered ‘perfectly mapping’ if they are identical to the reference and their mapping distance is in the
expected insert size). The ‘getPerfectCoverage.2lanes.sh’ script uses the very fast SNP-o-matic algorithm to generate plot files for each
sequence in a given file. It should take about 5 min for bacterial genomes. The arguments to the script are as follows: the genome
sequence; the first Illumina FASTQ file; the second Illumina FASTQ file; and the mean fragment size for the paired Illumina reads.
Standard output should indicate the coverage levels. Plots for each sequence can be found in the output directory ‘PerfectCoverage-
plots’. Type the following command in a terminal window:
$ getPerfectCoverage.2lanes.sh finalICORNresult.fasta pairedReadsPart_1.fastq pairedReadsPart_2.fastq 300

The generated plots can be loaded into Artemis. Possible problems with the assembly are indicated where the coverage drops toward
zero. Then using the logarithmic view, the sink in the plots are more visible. Please note that SNP-o-matic maps a repetitive mapping
read pair to all the possible positions in the genome. This means that if a repetitive region is represented three times in a genome, the
coverage would be tripled as compared with the rest of the genome.

2. Possible misassemblies can be found in regions with 0 or < 5 perfect-mapping reads. Those potential erroneous regions can be
converted to a sequencing gap (i.e., the bases are switched to Ns). Rather than do this manually in Artemis, it is easiest to use the
‘PerfectMapping2n.pl’ script, with the directory ‘PerfectCoverageplots’ generated by the ‘getPerfectCoverage.2lanes.sh’ script (described
above), to generate a new FASTA file, ‘result.fasta’. Type the following in a terminal window:
$ PerfectMapping2n.pl finalICORNresult.fasta PerfectCoverageplots result.fasta

The standard output will report how many bases were converted to Ns. For all further downstream analysis, it is recommended to use
this output. Please note that this script could also be run on an initial assembly, or on the output from ABACAS, so that the regions
converted to Ns could subsequently be closed by IMAGE. The only drawback could be that few reads map close to the ends of contigs,
and therefore the gaps might be extended. Please note that although the script can find misassemblies, it cannot be guaranteed to
find them all.

3. Another option for investigating the quality of the consensus sequence is to map the sequencing reads back to it and visualize the
resulting BAM file in Artemis or ACT (a BAM file contains all mapping information for all the reads). PAGIT has a script to map the
reads with SMALT (http://www.sanger.ac.uk/resources/software/smalt/) against the given reference and generate a BAM file called
‘little.smalt.bam.sh’. The first parameter is the sequence file, followed by the k-mer and step size for SMALT. We suggest leaving those
as given in this example. Next, the forward and reverse reads are given. The last two parameters are the output prefix for the mapping
results and the insert size of the read pairs:
$ little.smalt.bam.sh finalICORNresult.fasta 15 3 pairedReadsPart_1.fastq pairedReadsPart_2.fastq ResultMapping 1000

To open the BAM file in Artemis, type the following command:
$ art -Dbam = ResultMapping.bam finalICORNresult.fasta

Visualizing mapped reads is a powerful way to analyze the data. For example, it is possible to check whether the coverage over the
ABACAS bin contigs (i.e., the contigs that were not aligned against the reference) is equal to that of the rest of the assembly—
contamination and new plasmids have different coverage levels. It is possible to examine if the two mates are mapping on different
contigs, and then it might be appropriate to order (i.e., scaffold) the contigs manually. Smaller regions of higher coverage could
indicate collapsed repeats. Regions with heterozygous SNPs (such that not all reads have the SNP) in haploid genomes can indicate
indels. For examples please see http://www.sanger.ac.uk/resources/software/artemis/ngs/ and ref. 20.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1269

following command in a terminal window to join the reference sequences into the file: ‘Refsequence.union.fasta’. This file
should now be used in place of the file ‘Refsequence.fasta’ in subsequent steps:
$ perl $PAGIT_HOME/ABACAS/joinMultifasta.pl Refsequence.fasta Refsequence.union.fasta

10| Check the ABACAS usage information and view basic help, and then run ABACAS with the required parameters. The main
parameters are as follows: the ‘-r’ flag, which is used to specify the file containing the reference genome; the ‘-q’ flag, which
specifies the file containing the assembled sequences that are to be ordered; the ‘-p’ flag, which specifies which alignment
program to use (either NUCmer for alignment in nucleic acid space or PROmer for alignment in amino acid space); and the
‘-o’ flag, which specifies the prefix for the output file names. The default options generate ordered contigs in a single FASTA
file. However, by using flags ‘-m’ and ‘-b’, multiple-FASTA format files of the ordered contigs and the unused contigs (from
the bin) can be produced. Call ABACAS by typing the following two commands in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -h
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta -p nucmer
-m -b -o myPrefix

! cautIon Errors may occur if two or more instances of ABACAS are running in the same directory. This is because the
alignment software NUCmer or PROmer always outputs a temporary file with the same name, and thus multiple instances of
ABACAS will attempt to read and write from the same file. Only run a single ABACAS instance in a directory at a time.
 crItIcal step If you have a circular genome, you can use the ‘-c’ flag.
? trouBlesHootInG

11| (Optional) If you ran the ‘joinMultifasta.pl’ script (Step 9) before running ABACAS, then you will need to use the ‘splitA-
BACASunion.pl’ script to decompose the results into contig mappings against the individual reference sequences. The results
will be ‘myPrefix.ReferenceName.fasta’ and ‘myPrefix.ReferenceName.tab’, where ‘ReferenceName’ stands for the replicon
names from the reference. Type the following command in a terminal window, where the three files beginning with ‘myPrefix’
will be the output from the ABACAS run:
$ perl $PAGIT_HOME/ABACAS/splitABACASunion.pl Refsequence.fasta Refsequence.union.fasta
myPrefix.fasta myPrefix.crunch myPrefix.tab

12| Check the ABACAS output (Box 4). To gain a general overview of the results, first look at the file ‘myPrefix.gaps.stats’. This file
provides a quick summary of the gaps present in the ordered pseudomolecule. Type the following command in a terminal window:
$ more myPrefix.gaps.stats

! cautIon ABACAS is not designed to order genomes in which rearrangement is expected, as it might result in the wrong order
of contigs. Large gaps listed in the file ‘myPrefix.gaps.stats’ can indicate possible rearrangements between the genomes.
? trouBlesHootInG

 Box 3 | Running ABACAS for primer design ● tIMInG ~15 min
1. After the contig ordering is completed, ABACAS will prompt users to provide appropriate parameters for selecting primers. These
parameters include primer size, melting temperature, size of flanking regions, product size and GC content of primers. Primers can be
automatically designed while ordering contigs using the following command:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta -p nucmer -m -b -o myOutput –P

 crItIcal step Sequence gaps represented as Ns (as small as 1 bp) will be identified by ABACAS for primer design. It is therefore
important to check the distribution of gap sizes before setting the maximum product size.
? trouBlesHootInG
2. Primer design can also be performed independently after the contig-ordering stage. Here the flag ‘-e’ dictates that ABACAS will
ignore the sequence-ordering step and go directly to designing primers. Primer sets are checked for uniqueness against the reference
genome using a sensitive NUCmer search. The primer design phase could be repeated for different parameters without reordering con-
tigs. To perform this, type the following command in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r Refsequence.fasta -q assembly.fasta –e

? trouBlesHootInG
3. Check the ABACAS output. Sense and antisense primers are written in separate files formatted using a 96-well plate: ‘sense_primers.
out’ and ‘antiSense_primers.out’. Other output files include a primer3 summary file with alternative primer sets: ‘antiSense_primers.out’.
See Box 4 for further information on ABACAS output.

4. ABACAS can also be used to design primers to validate SNPs from functional studies by replacing each putative SNP position with
5 Ns, and thus ABACAS assumes they are gaps and therefore will design primers over the regions.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1270 | VOL.7 NO.7 | 2012 | nature protocols

13| (Optional) To visualize the mapped alignments using the ACT genome browser, type the following command in a
terminal window:
$ act Refsequence.fasta myPrefix.fasta.crunch myPrefix.fasta

14| (Optional) To view other ABACAS output files in ACT, such as feature files describing ordered contigs and gaps (‘myPrefix.
tab’ and ‘myPrefix.gaps.tab’), then in ACT go to File Read an entry and select ‘myPrefix.gaps.tab’.

15| (Optional) Unmapped contigs will be placed in the ABACAS bin: it is recommended to BLAST the contigs in the bin
against the reference by using ABACAS with the ‘-b -t’ options. If the binned contigs have acceptable matches with the
reference according to the BLAST results, then the ordering parameters used by ABACAS may have been too strict. It is there-
fore recommended to rerun ABACAS with slightly less stringent parameters, or to improve the ordering by moving contigs
around using a genome browser such as ACT. In ABACAS, the option ‘-a’ will append the bin contigs at the end of
the pseudomolecule, and these will then be visible in ACT for manual adjustment. This option is not recommended if IMAGE
will be run subsequently, as the contig borders will be lost.
! cautIon The contigs in the bin may contain important biological information, such as strain-specific insertions, plasmids
or highly diverged sequence, which might be worth further investigation.

16| (Optional) The crunch file generated through NUCmer or PROmer is not as accurate as a BLAST comparison file; however,
it is possible to generate a BLAST comparison file. To do this, first create a blast database from the reference genome, then
BLAST the mapped contigs against the created BLAST database and finally start up ACT. Type the following three commands
in a terminal window:
$ formatdb -p F -i Refsequence.fasta
$ blastall -p tblastx -e 1e-20 -m 8 -d Refsequence.fasta -i myPrefix.fasta -o myPrefix.blast
$ act Refsequence.fasta myPrefix.blast myPrefix.fasta

 crItIcal step To obtain a nucleotide comparison rather that a six-frame comparison, change ‘TBLASTX’ to ‘BLASTN’.

 Box 4 | Output interpretation for ABACAS
To gain a quick overview of the output of ABACAS, look at the file ‘myPrefix.gaps.stats’. This file gives statistics about the gaps
that remain in the assembly after mapping it to the reference. These include the number of overlapping gaps and real gaps, as
well as further statistics on the real gaps, such as the minimum, maximum and median gap size, the sum of all the gaps and the
N50 gap size.

Two types of gaps are considered in the output of ABACAS. Real gaps are regions of the reference genome where no contigs map.
Overlapping gaps are derived from two contigs that map to the genome and which overlap in their mapped positions, often owing to
low-quality sequences at the ends of contigs. A gap is therefore inserted between the mapped contigs and can subsequently be closed
by running IMAGE. ABACAS introduces 100 Ns (or a number specified by the user using flag ‘-g’) to distinguish such gaps from real or
genuine gaps.

To gain a clearer view of the contig mapping, ABACAS produces output files that may be visualized using a genome browser such as
Artemis or ACT. These files include the following:
 ● myPrefix.crunch: this is the main file to be used by a genome browser. The format is standard for genome browsers and is described
in the Artemis manual.
 ● myPrefix.tab: this is a genome browser feature file and it gives color-coded mapping information that describes whether the
contigs align in a forward or reverse direction, or whether they are overlapping.
 ● myPrefix.gaps.tab: this is a genome browser feature file that describes the length and type of gaps (i.e., overlapping or
real gaps).

Other output files list some general information about the contig mappings:
 ● myPrefix.gaps: each line in this file describes one of the gaps. The columns in this file are as follows: the first is always the text
‘Gap’. The second is the size of the gap. Columns three to six represent start and end positions on the pseudomolecule and then start
and end positions on the reference. The final column describes whether the gap is a nonoverlapping (i.e., real) gap, or if it is a gap
introduced because of overlapping contigs. A quick overview of gap sizes can be found from the second column of the *.gaps output
file (awk ‘print $2 ‘ *.gaps). Extracting this column to a file will allow for quick statistics of the gaps using R or excel.
 ● myPrefix.bin: a list of unmapped contigs.
 ● myPrefix.fasta: this is the output sequence, i.e., the contigs mapped to the chromosome or chromosomes with the gaps denoted by
a series of Ns.
Please note that ABACAS has various parameters that may be used to control the output, as described in its usage information.
? trouBlesHootInG

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1271

17| In preparation for running IMAGE, concatenate together the mapped sequences and the unmapped sequences. Type the
following command in a terminal window:
$ cat myPrefix.fasta myPrefix.contigsInbin.fasta > mappedAndUnmapped.fasta

! cautIon If this concatenation step is skipped (or if the ‘-b’ option is not used with ABACAS), then the unmapped
sequences of the genome will be lost to subsequent steps of the protocol. Note that the ‘-a’ option should not have been
used, because the unordered contigs would be part of the ordered pseudomolecule.

running IMaGe to close gaps in scaffolds ● tIMInG ~6 h
18| Set up a working directory for IMAGE, and link in the files containing the short read pairs by typing the following
five commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runIMAGE
$ cd runIMAGE
$ ln -s /path/to/pairedReadsPart_1.fastq .
$ ln -s /path/to/pairedReadsPart_2.fastq .

! cautIon Before running IMAGE (or generally doing assemblies), sequencing reads should be cleaned from possible
sequencing vector, as they can generate assembly errors. Reads can be trimmed or removed from the read set, e.g., using
Cutadapt (http://code.google.com/p/cutadapt/).
 crItIcal step IMAGE can also be used for extending seed sequences into longer contigs as described in Box 5.

19| To link in the latest assembly, either the output from ABACAS (from Step 17) or the sequence output from a de novo
assembly, type the following command into a terminal window:
$ ln -s /path/to/assembly./inputScaffolds.fasta

20| Check IMAGE usage information and view basic help, by typing the following command in a terminal window:
$ perl $PAGIT_HOME/IMAGE/image.pl

! cautIon It can be a good idea to remove smaller contigs (< 500 bp) from the assembly before running IMAGE. If a contig
should have been placed in the gap of a scaffold or a pseudomolecule, but was not, then it is just possible to close this gap
by deleting the small contig.

 Box 5 | Using IMAGE for extending seed sequences into longer contigs
● tIMInG ~2 h
1. Set up a working directory for IMAGE, and link in the files containing the seed sequences and the read pairs by typing the following
six commands in a terminal window:
$ cd /path/to/myWorkingDir

$ mkdir runIMAGE

$ cd runIMAGE

$ ln -s /path/to/pairedReadsPart_1.fastq .

$ ln -s /path/to/pairedReadsPart_2.fastq .

$ ln -s /path/to/seed.fasta .

! cautIon The initial seed sequences must be of at least 300 bp.

2. Run IMAGE using the ‘-smalt_minScore’ parameter and specify a relatively large number of iterations. The ‘-smalt_minScore’ param-
eter is used to specify the Smith-Waterman score that a read has when mapped onto the reference: if it maps with its complete length,
without any mismatch or indel, then the score is equal to the read length, whereas if it maps with one mismatch then the score is
the read length minus 3. Therefore, to map the reads to positions where each read would be expected to have three mismatches, the
‘-smalt_minScore’ parameter would be set to the read length minus 9. In this way, the ‘-smalt_minScore’ parameter is used to tighten
the constraints on where a read is mapped to a contig—and it therefore determines whether the second read of the pair is able to
extend the contig and thus should be included in a local assembly. Type the following command in a terminal window (for 75 bp reads):
$ perl $PAGIT_HOME/IMAGE/image.pl -scaffold seed.fasta -prefix pairedReadsPart -iteration 1

-all_iteration 30 -dir_prefix ite_seed - smalt_minScore 67 -kmer 71

! cautIon If the seed is similar to another region of the genome, this approach may create a chimeric contig.
 crItIcal step It is important that the mapping constraints be tight enough to ensure that reads from different regions of the
genome do not map to the seed.
 crItIcal step It is best to use large k-mers for seeding applications.

3. To check the results using the ‘image_run_summary.pl’ script, as described in PROCEDURE Step 22, type the following command in a
terminal window:
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl ite_seed

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1272 | VOL.7 NO.7 | 2012 | nature protocols

21| Run IMAGE with the required parameters by executing one of the following sets of commands; option A represents
the simplest usage, whereas option B optimizes the gap closing. In the following, the ‘-scaffolds’ option defines an
input file in FASTA format of sequences containing gaps to be closed; the ‘-prefix’ option identifies the FASTQ files
containing the read pair sequences; the ‘-dir_prefix’ option gives the directory name prefix for the directories containing
the output files for each iteration; the option ‘-iteration’ specifies the number of the first iteration; and the ‘-all_
iteration’ option defines the range or total number of iterations. These numbers are combined with the directory prefix
to create the names of the output directories. Finally, the ‘-kmer’ option specifies the k-mer used for the local
assemblies performed at the gaps:
(a) the simplest usage of IMaGe
 (i) To use a single k-mer and to run through a number of iterations without restarting, type the following command in a

terminal window:
$ perl $PAGIT_HOME/IMAGE/image.pl -scaffolds inputScaffolds.fasta -prefix pairedReadsPart
-iteration 1 -all_iteration 9 -dir_prefix ite -kmer 55

(B) optimizing the gap closing
 (i) If the reads used to span the gaps are relatively large (for example, 108 bp), then the results from IMAGE can be im-

proved by using a range of different k-mers. To run IMAGE with a range of k-mers, type the following four commands in
a terminal window:

$ perl $PAGIT_HOME/IMAGE/image.pl -scaffolds inputScaffolds.fasta -prefix pairedReadsPart
-iteration 1 -all_iteration3 -dir_prefix ite -kmer 91
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite3 71 3 partitioned
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite6 51 3 partitioned
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite9 31 3 partitioned

 crItIcal step Note that the initial iterations of IMAGE close most of the gaps, especially the first and second iterations.
If time or computational resources are limited, then just running 1 or maybe 2 iterations with a small k-mer can still
substantially improve a genome assembly.

22| Check the output of IMAGE (Box 6). In each iteration directory (these directories are called after the value given
to the ‘-dir_prefix’ parameter) there is a file called ‘walk2.summary’, which contains some statistics describing what was
achieved during that gap-closing iteration. A summary of the statistics in each of these files may be viewed by using the

 Box 6 | Output interpretation for IMAGE
IMAGE outputs a relatively large number of files when it is running, but only a small number need be of interest to the user: these files
are located in each of the iteration directories. Within each IMAGE iteration directory three of the files created are of particular
interest. These files include the following:
 ● new.fa: the set of updated contigs created during the current gap-closing iteration.
 ● new.read.placed: maps contigs to scaffolds for the current iteration.
 ● walk2.summary: gives a short description of the gap-closing results for each iteration, including the number of gaps in the
assembly, the number closed during the current iteration and contigs that have been extended from one or both sides.
 ● After the first iteration, IMAGE creates a much smaller subset or partition of each of the initial FASTQ files. These new FASTQ files
(‘partitioned_1.fastq’ and ‘partitioned_2.fastq’) only contain those reads that are involved in spanning gaps (i.e., read pairs that map
to the middle of contigs are removed). When the initial FASTQ files are very large, using the partitioned FASTQ files can substantially
reduce the execution time.
IMAGE provides scripts that summarize the output from all iteration directories (i.e., the gaps closed, extended and so on) and that
rescaffold the final set of contigs (‘image_run_summary.pl’ and ‘contigs2scaffolds.pl’).

In the base IMAGE directory, when IMAGE is executed using the ‘-scaffolds’ option, the following input files for IMAGE are
automatically created:
 ● read.placed.original: maps contigs to scaffolds for the initial FASTA file (that contains sequences with gaps to be closed).
 ● read.placed: may rename the contigs and scaffolds in the read.placed.original file if they contain problematic characters.
 ● contigs.fa.original: contains the initial set of contig sequences in FASTA format.
 ● contigs.fa: may rename the contig headers in the contigs.fa.original file if they contain problematic characters.
 crItIcal step If another run of IMAGE is started using the ‘image.pl’ script in the same directory as an existing IMAGE run, then it
is important to first delete the automatically created input files because IMAGE will not overwrite them. Please note that the
recommended way to continue an existing IMAGE run is via the ‘restartIMAGE.pl’ script: it is not necessary to delete any files before
running this script.
? trouBlesHootInG

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1273

‘image_run_summary.pl’ script, which has only one argument: the prefix of the output directories. To run the script type,
the following two commands in a terminal window:
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl
$ perl $PAGIT_HOME/IMAGE/image_run_summary.pl ite

? trouBlesHootInG

23| (Optional) If the output of IMAGE shows that gaps are still being closed, or if contigs are still being extended, then it
may be worth running some more iterations. To restart IMAGE from iteration 9, with a k-mer size of 31, for 3 more iterations,
type the following into a terminal window:
$ perl $PAGIT_HOME/IMAGE/restartIMAGE.pl ite9 31 3 partitioned

24| Once IMAGE has completed its run, the contigs that are found in the file ‘new.fa’ under each iteration directory may
be output as scaffolds using the ‘contigs2scaffolds.pl’ script. See Box 6 for further detail about IMAGE output. The final
iteration directory (i.e., the directory with the highest number appended to its prefix name, e.g., ‘ite9’) gives the most
contiguous set of contigs. The arguments given to the ‘contigs2scaffolds.pl’ script are as follows: ‘new.fa’ is the file contain-
ing the set of contigs for the final iteration; the file ‘new.read.placed’ gives the scaffolding information for the new contigs
based on the initial set of scaffolds; the number ‘300’ gives the gap between contigs in the scaffold (denoted by NNs in the
output file); ‘0’ gives the minimum size for contigs to be included in the scaffolds output file; and ‘scaffolds’ is the prefix of
the output scaffolds file, which will be in FASTA format. Type the following three commands in a terminal window to change
to the final iteration directory, to view the usage information for the script ‘contigs2scaffolds.pl’ and to run the script:
$ cd ite9
$ perl $PAGIT_HOME/IMAGE/contigs2scaffolds.pl
$ perl $PAGIT_HOME/IMAGE/contigs2scaffolds.pl new.fa new.read.placed
300 0 scaffolds

! cautIon In some applications, we have observed small contigs (≤500 bp) generating missassemblies by duplicating
their sequence.

running Icorn ● tIMInG 1–2 h per iteration
25| Set up a working directory for ICORN, and link in the files containing Illumina reads by typing the following five
commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runICORN
$ cd runICORN
$ ln -s /path/to/pairedReadsPart_1.fastq .
$ ln -s /path/to/pairedReadsPart_2.fastq .

 crItIcal step ICORN can also be used to find high-quality variants as described in Box 7.

26| Link in the assembly to be corrected. This could be the output from ABACAS (from Step 17) or IMAGE (from Step 24), or
the sequences output from a de novo assembly. Type the following command into a terminal window:
$ ln -s /path/to/assembly ./uncorrected.fasta

27| First, check the ICORN usage information and view basic help. The arguments to ICORN are as follows: the first is the
FASTA file of the sequence to be corrected; the second and third specify the first and last iterations; and then come the
Illumina read file or files used to make the corrections. For paired-end reads, a number of libraries can be used. A file is
specified for each half of the pair, followed by an estimation of the range of the insert size for the paired reads and the
mean insert size range; if another paired-end Illumina library is available, then this is specified in the same way. If a single-
end library is available, then the insert size arguments are missed out. Type the following command in a terminal window:
$ icorn.start.sh

28| Run ICORN with the required parameters. Choose one of the following options, depending on the available Illumina
libraries. Use option A to call ICORN with one paired-end library, option B if two paired-end libraries are available or option C
if only one single-end Illumina library is available:
(a) to call Icorn with one paired-end library (with an insert size of 250 bp)
 (i) Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 pairedReadsPart_1.fastq
pairedReadsPart_2.fastq 100,500 250

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1274 | VOL.7 NO.7 | 2012 | nature protocols

(B) to call Icorn if two paired-end libraries are available (with insert sizes of 250 and 3,000 bp)
 (i) Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 ApairedReadsPart_1.fastq
ApairedReadsPart_2.fastq 100,500 250 BpairedReadsPart_1.fastq
BpairedReadsPart_2.fastq 2000,4000 3000

(c) to call Icorn if only one single-end Illumina library is available
 (i) Type a command similar to the following in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 unpairedReads.fastq

 crItIcal step If you have long insert-size libraries, it might be necessary to reverse-complement the reads before
performing the mapping.

29| At the end of an ICORN run, three small files may be consulted to view how ICORN has performed: the ‘ICORN.overview.
txt’ file has a general overview; the ‘Stats.Mapping.csv’ file shows the improvements in the number of reads that map to the
sequence after each iteration; and the ‘stats.Correction.csv’ file gives the numbers of corrections made for each iteration. For
further detail, please see Box 8. To view the contents of these files, type the following three commands in a terminal window:
$ more ICORN.overview.txt
$ more Stats.Mapping.csv
$ more Stats.Correction.csv

! cautIon ICORN cannot correct regions where no reads map uniquely. Double-check the ‘Stats.Mapping.csv’ to ensure that
the percentage of the genome is covered to at least 20×.
! cautIon If you work with haploid genomes, then SNPs called as heterozygous by ICORN might be misassemblies consisting
mostly of larger insertions and deletions or collapsed repeats.
 crItIcal step Further ways of evaluating the consensus sequence are given in Box 2.
? trouBlesHootInG

30| (Optional) In the file ‘ICORN.overview.txt’, the errors corrected by ICORN in the last iteration are listed. If errors are still
being corrected, then it might be advisable to run further iterations. The call is as before, just changing the start and end
iteration:
$ icorn.start.sh uncorrected.fasta 7 9 pairedReadsPart_1.fastq pairedReadsPart_2.fastq
100,500 250

! cautIon Only a single instance of ICORN should be run at a time in a directory (to avoid different instances simultane-
ously accessing the same files).
 crItIcal step Around 85% of the errors are corrected in the first iteration. Most errors in the coding regions are
corrected in the first two iterations.

31| (Optional) It is recommended to view the corrections made by ICORN in a genome browser such as Artemis. The file
‘All.Reference.gff’ will show the corrections projected onto the original sequence; see Box 8 for a description of the

 Box 7 | Using ICORN to find high-quality variants ● tIMInG ~6 h
1. Set up a working directory for ICORN and link in the files containing Illumina reads and the sequence to be investigated for variants
by typing the following six commands in a terminal window:
$ cd /path/to/myWorkingDir

$ mkdir runICORN

$ cd runICORN

$ ln -s /path/to/pairedReadsPart_1.fastq .

$ ln -s /path/to/pairedReadsPart_2.fastq .

$ ln -s /path/to/sequence.fasta ./uncorrected.fasta

2. Call ICORN by typing the following commands in a terminal window:
$ icorn.start.sh uncorrected.fasta 1 6 pairedReadsPart_1.fastq pairedReadsPart_2.fastq

100,500 250

3. Check the output file ending in ‘.PerBase.stats’ to obtain a list of the variants that ICORN found for each iteration. This is described
in Box 8.

4. (Optional) If the results are satisfactory, the ICORN output can be removed. Delete all the directories generated by ICORN by typing
the following command in a terminal window:
$ rm -r Reference.*/

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1275

ICORN’s output. To look at the final version of the correction, open Artemis with the ‘Final.ICORN.fasta’ file, and open the
perfect-mapping plot for the ‘PerfectMappingPlot’ directory. By right clicking on the graph, one can generate regions with
no coverage that were not corrected. The rest, as reported in the ‘ICORN.overview.txt’ file, should be perfect sequence.
The following command will open Artemis with the corrections. Once it is open, you can load the plot files from the
‘PerfectCoverageplots’ directory:
$ art uncorrected.fasta + All.Reference.gff

32| (Optional) If the file ‘uncorrected.fasta’ contains more than one sequence, then it is necessary to index the FASTA file, so
that Artemis can select between the different sequences in the file:
$ samtools faidx uncorrected.fasta

! cautIon Systematic errors in Illumina reads around homopolymer tracks15 will cause ICORN to incorrectly identify heterozygous
SNPs. Strand-specific motif errors are another potential source of error, but so far such errors have not been observed in ICORN.

running ratt to transfer annotations from a reference genome ● tIMInG 60–90 min
33| Set up a working directory for RATT by typing the following three commands in a terminal window:
$ cd /path/to/myWorkingDir
$ mkdir runRATT
$ cd runRATT

 Box 8 | Output interpretation for ICORN
If ICORN runs to completion, there will be a directory for each ICORN iteration. The names of these directories are based on the
original sequence file, with a number appended to the original file name corresponding to each iteration.

In the main ICORN working directory, there are two important files to look at after a run:
1. Stats.Mapping.csv: statistics based on the number of reads mapped (including read-pairs and unique mappings), the depth of
genome coverage of the mapped reads, and how the genome size may change as corrections are made because of small insertions and
deletions. There is a separate column of results for each ICORN iteration.
2. Stats.Correction.csv: a breakdown of the different types of correction made by ICORN. A separate column is given for each ICORN
iteration. The types of correction made by ICORN are as follows:
 ● SNP: the correction of a single nucleotide or base pair
 ● INS: insertion of up to 3 bp in order to fix an incorrect deletion
 ● DEL: removal of up to 3 bp in order to fix an incorrect insertion
 ● HETERO: If a second allele is called with a frequency between 0.15 and 0.5, the base is called heterozygous. The consensus
sequence is derived from the most abundant allele.
 ● Three types of corrections (SNP, INS and DEL) that are themselves corrected (i.e., rejected) as the coverage of mapping reads
increases. The corrections are labeled as Rej.SNP, Rej.INS and Rej.Del.
To see a summary of the ICORN results, look at the file ‘ICORN.overview.txt’. This file contains basic information on the corrections and
the coverage of mapping reads. It is a short summary of the above two files, including the amount of corrections per iteration and the
amount of base covered with perfect-mapping reads.

Around 90% of the reads should map, depending on the quality of the Illumina input files and the draft genome. For read pairs, the
amount of uniquely mapped read pairs should be 60–80%, although a repeat-rich genome may reduce this substantially. If a newly
generated draft genome is used, then this number may drop to around 40%, as most read pairs will lie on different contigs. Only
regions covered with 20× mapped reads will be corrected.

By using a genome browser such as Artemis and the GFF files output by ICORN, it is possible to view the corrections made for each
sequence (contigs or scaffold) in the uncorrected input file. GFF files are made at each iteration, and at the end of the iterations these
files are combined into a single file (for each contig or scaffold). The naming convention for these files is as follows:
 ● At each iteration, the GFF files are made from three components joined together using a ‘ . ’: the initial uncorrected sequence name
(e.g., ‘uncorrected.seq’), the iteration number (e.g., 1) and the contig or scaffold name (e.g., ‘ctg0001’). In this case the GFF would be
called: ‘uncorrected.seq.1.ctg0001.gff’
 ● The final GFF files are constructed using a prefix ‘All’ joined to the contig name, e.g., ‘All.ctg0001.gff’

Other important files written to the base ICORN directory include the following:
 ● The FASTA file of the corrected sequence that is written at each iteration. The name of this file is based on the original sequence
file, with a ‘.’ and a number appended to original file name corresponding to each iteration. It is found in the base directory of ICORN.
 ● At each iteration, the file with the ending ‘PerBase.stats’ gives a list of all the different high-quality variants that ICORN found. The
format of this file is as follows: column one, sequence name (usually a contig or scaffold); column two, base position of the variant relative to
the initial uncorrected sequence; column three, type of variant (SNP, INS, DEL and so on); and column four, corrected base of the new variant.

The directory ‘PerfectCoverageplots’ contains files giving the coverage for each base. This is just a single column of numbers giving
the coverage, starting at base 1. These files can be loaded into Artemis.
? trouBlesHootInG

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1276 | VOL.7 NO.7 | 2012 | nature protocols

 crItIcal step Before you run RATT, you may need to adapt the setting in the file $RATT_CONFigure. Use the command
‘echo $RATT_CONFIG’ to get the position of the file, and then open it in an editor. If necessary, adapt the triplets for start
and stop codons, specify splice sites and tell RATT not to correct pseudogenes. Note that example config files are given in
the RATT home directory (‘$PAGIT_HOME/RATT’).

34| Make a directory for the EMBL files (see Step 7 for help with converting annotation files between formats), and link in
the files containing the reference genome annotation to that directory by typing the following three commands in a terminal
window:
$ mkdir EMBL
$ cd EMBL
$ cp -s /path/to/Refannotations/*.embl .

! cautIon The quality of the annotations generated by RATT is highly dependent on those in the reference annotations.
See also Box 9 for the RATT transfer options.

35| Return to the RATT working directory by typing the following command in a terminal window:
$ cd ..

36| Link in the assembly to be annotated. This could be the output from ABACAS (from Step 17), IMAGE (from Step 24) or
ICORN (from Step 29), or the sequences output from a de novo assembly. Type the following command into a terminal
window:
$ ln -s /path/to/assembly ./unannotated.fasta

37| Check the RATT usage information and view basic help (see also Box 9 for an explanation of the RATT transfer
parameters), and then run RATT with the required parameters by typing the following commands in a terminal window:
$ start.ratt.sh

38| Run RATT with the following arguments: the directory containing the annotations that are in EMBL format; the
unannotated query file; the output prefix; and finally the type of annotation transfer. Use option A to transfer from a
different strain, option B to transfer from a related species or option C to transfer multiple annotations from more than
one strain or species:
(a) annotation transfer from a different strain
 (i) (Optional) Type the following command in a terminal window:
$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Strain > ratt.output.txt

 Box 9 | RATT transfer parameters
It is important to choose the correct transfer parameter when using RATT. It influences the speed and accuracy in NUCmer, the
insertion of ‘Faux-SNPs’ (temporary modifications to SNPs) and the synteny identification process. It is always worth running RATT with
different parameters to see whether the annotation improves. Further information on this is available; see the table under the RATT tab
on PAGIT webpage (http://www.sanger.ac.uk/resources/software/pagit/).

There are three main parameter sets to use: ‘Assembly’, ‘Strain’, and ‘Species’. ‘Assembly’ is used to transfer between different assem-
blies of the same isolate. ‘Faux SNP’ are included in the ‘Assembly’ and ‘Strain’ parameters.

These three parameter sets can be extended with two further settings. The first extension, ‘.Repetitive’, is used if the reference has
many repetitive regions. This will extend the execution time. For example, when transferring annotation between different strains, the
‘Strain’ parameter becomes ‘Strain.Repetitive’. The second extension, ‘.Global’, is used if the query sequence does not have many gaps or
rearrangements when compared with the reference.

The ‘Multiple’ parameter set is used to transfer annotation from multiple references. Finally, there is the ‘Free’ parameter for advanced
users who wish to set their own parameters. This is further explained in the RATT SourceForge documentation: http://ratt.sourceforge.net/
documentation.html

A comprehensive list of all the available transfer parameters is as follows:
 ● ‘Assembly’, ‘Assembly.Repetitive’,
 ● ‘Strain’, ‘Strain.Global’, ‘Strain.Repetitive’, ‘Strain.Global.Repetitive’,
 ● ‘Species’, ‘Species.Global’, ‘Species.Repetitive’, ‘Species.Global.Repetitive’,
 ● ‘Multiple’
 ● ‘Free’

http://ratt.sourceforge.net/documentation.html
http://ratt.sourceforge.net/documentation.html

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1277

(B) annotation transfer from a related species
 (i) (Optional) Type the following command in a terminal window:
$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Species > ratt.output.txt

(c) Multiple annotation transfer from more than one strain or species
 (i) (Optional) To use RATT with multiple reference annotations, set up RATT as in Step 33, but ensure that all the

reference genome EMBL files have been placed in the EMBL file directory. Thereafter, type the following command in a
terminal window:

$ start.ratt.sh ./EMBL unannotated.fasta myPrefix Multiple > ratt.output.txt

39| Check RATT output. See Box 10 for details of the output files.
 crItIcal step If the amount of synteny between the sequences is low and not many genes were transferred, then try
rerunning RATT with another parameter such as ‘Strain.Global’ or ‘Species.Global’ (Box 9).
? trouBlesHootInG

40| Manually view the output using ACT. Type the following command in a terminal window:
$ art myPrefix.queryname.final.embl + Query/myPrefix.queryname.Mutations.gff
Alternatively, if the annotation comes from several references (see Step 38C), it is not possible to use ACT, in which case it
is possible to analyze the data with Artemis instead.

 crItIcal step To see from which reference the annotation was transferred, look up the systematic_ID or locus_tag of the
gene models. This unique identifier normally has the abbreviation of the reference in the name.
 crItIcal step Please note that commands for starting the genome browser Artemis with the annotated sequences are
printed as part of RATT’s standard output.

41| (Optional) To analyze which features were not transferred, load the results into ACT. Generate a new BLAST comparison
file with the updated sequence by typing the following two commands in a terminal window:
$ formatdb -p F -i Refsequence.fasta
$ blastall -p blastn -m 8 -e 1e-40 -d Refsequence.fasta -i Sequences/myPrefix.queryname
-o prefix.blast

42| (Optional) Start ACT with the following command:
$ act EMBL/Refannotations.embl prefix.blast myPrefix.queryname.final.embl

 Box 10 | Output interpretation for RATT
RATT standard output gives an overview of the results: for each sequence, the number of synteny regions is given, and then statistics
on the transferred features and CDS are also given. After the transfer, each gene with an incorrect start or stop codon is reported, as
well as whether RATT could fix it in the correction step. We recommend redirecting the RATT standard output to a file.

There are two types of output file for RATT: a number of files that refer to the initially unannotated file, including a general report file,
and a number of files that refer to the reference file from which the annotations are being transferred.

The most general report file is ‘userPrefix.fastaHeader.Report.txt’. It gives information on syntenic regions, annotation correctly trans-
ferred, and information on incorrectly transferred gene models, with some instructions about how they might be corrected for the query.

Output files from RATT that refer to the initially unannotated query file are constructed by combining an output file prefix that is set
by the user, with the FASTA headers from the query file (each sequence in the query file is annotated separately) and a file ending that
identifies each output file. The files for the reference (annotated genome) are as follows:
 ● userPrefix.fastaHeader.embl: these are all the potential annotations.
 ● userPrefix.fastaHeader.final.embl: these are the corrected annotations and any annotations that could not be corrected. They also
contain the sequence.
 ● userPrefix.fastaHeader.Report.gff: gives information on where RATT has been able to correct CDS models or not. RATT looks at start
and stop codons, splice sites, frameshifts and joined exons.
 ● In the ‘Query’ directory, the file: userPrefix.fastaHeader.Mutations.gff. This file gives details of regions that could not be transferred be-
cause there was no synteny, because insertions or deletions were present, or because there was low sequence similarity or identical repeats.

The output files that refer to the annotated genome (the reference) are constructed by combining the prefix set by the user with the
prefix of the reference EMBL file and with a file ending identifier. The files for the annotated genome or reference are as follows:
 ● userPrefix.EMBLprefix.NOTTransfered.embl: annotations that were not transferred.
 ● In the ‘Reference’ directory, the file: userPrefix.EMBLprefix.Mutations.gff. The contents of this file are described above.
? trouBlesHootInG

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1278 | VOL.7 NO.7 | 2012 | nature protocols

43| (Optional) In ACT, include into the reference sequence (top window) the file ‘myPrefix.referencename.NOTTransfered.
embl’, as well as the file ‘Reference/myPrefix.referencename.mutations.gff’, by selecting File→Reference name (2nd line)→
Read an Entry. Onto the query you can include the file ‘Query/myPrefix.queryname’ by selecting File→Query name (3rd line)→
Read an Entry. Choose the ‘one line per entry’ option by right-clicking on the genome sequence of the reference. Now it is
possible to analyze which models were transferred, which regions have no synteny (and therefore no transferred annotations),
and where variants between the two genomes exist.
 crItIcal step It is very important to analyze the regions of sequence that have no synteny to the reference, because
in those regions no annotation is transferred. On such sites, an ab initio prediction could be done: these genes might be
unique3. It is also important to analyze the sequence from the ABACAS bin, which will be individual EMBL files.
 crItIcal step Gene models that failed to transfer may indicate deletions in the unannotated sequence or low similarity
regions and should be manually inspected.

? trouBlesHootInG
Troubleshooting advice can found in table 2.

taBle 2 | Troubleshooting table.

step problem possible reason solution

10 and Box 3 ABACAS is running
slowly

The sequences being compared are
large, and ABACAS is conducting a
search (via the alignment software
NUCmer or PROmer) that is much
finer and more sensitive than is
necessary

It may be faster to use the ‘-d’ option in ABACAS. This
option uses the default options for PROmer or NUCmer
(it turns off sensitive mappings). Type the following
command in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r

Refsequence.fasta -q assembly.fasta -p

nucmer -d -b -o myPrefix

12 and Box 4 The contig alignments
output from ABACAS are
less than hoped for

The reference genome is highly
divergent when compared with the
assembly

Various parameters can be used to optimize the align-
ment process. These include ‘-i’ for the minimum
percentage identity (the default is for 40% sequence
identity between the mapped sequence and the refer-
ence); ‘-v’ for the minimum sequence coverage (i.e.,
proportion of a contig matching to a reference; the
default is that 40% of the sequence should be mapped
to the reference); and ‘-s’ to change the minimum
length of a matching word in NUCmer or PROmer (the
defaults are 12 and 4, respectively). They can be used
by typing the following command in a terminal window:
$ perl $PAGIT_HOME/ABACAS/abacas.pl -r

U00096.fna -q contigs.fa -p nucmer -s

10 -m -b -i 25 -v 30 -o myPrefix

22 and Box 6 The summary of IMAGE
results given in the out-
put file ‘walk2.summary’
show that all results
for gap closing, and
extended contigs, and
so on is zero

The k-mer parameter specified
in the IMAGE command line
arguments is used by the Velvet
assembler

If the k-mer parameter is longer than the length of the
reads used for gap closing, Velvet will be unable to pro-
duce any assemblies at all. Specify a shorter k-mer using
the IMAGE command line

SMALT, The read alignment
software used by IMAGE,
may fail

Check the contents of the ‘sam’ directory in the first
IMAGE iteration directory: if the ‘final.sam’ file is empty
there is a problem with SMALT. Also, the actual smalt
command used by IMAGE on your system, executed from
the ‘sam’ directory, will be printed to standard output. Try
executing this command manually to locate the problem

The Velvet assembly software
may fail

Investigate the contents of the velvet*.auto directory
in the (first) iteration directory. The velvet ‘Log’ file
may indicate the problem. Also, some velvet messages
get directed to standard output and these should be
checked for possible problems

(continued)

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1279

● tIMInG
Approximate timing information for PAGIT applied to a bacterial genome is given here. Please note that an experienced Linux
user and genome assembler may run through these stages substantially more quickly, and that the time required to manually
check the results depends very much on the genome being analyzed. These results assume the use of a machine with an Intel
processor X5650 (2.67 Ghz).
Steps 1–7, obtaining and installing PAGIT: 15–45 min (including 10 min execution time when running the example)
Steps 8–17, running ABACAS to order contigs or scaffolds on a reference genome: allow up to 40 min (the execution time is
just a few minutes, but it is advisable to spend 20 min or so manually checking the output)
Steps 18–24, running IMAGE to close gaps in scaffolds: ~6 h (IMAGE is much more computationally intensive than ABACAS
and will require ~6 h of execution time—note that the first iteration is by far the longest. However, it should only take about
15 min to set up the input files and get IMAGE running.)
Steps 25–32, running ICORN to correct small insertions, deletions and single base-pair errors: ~6 h (It will take about 15 min
to set up the input files for ICORN; thereafter, allow 1 or 2 h per iteration and about 30 min to check the output. Note that
both IMAGE and ICORN make most of their improvements in iterations 1 and 2.)
Steps 33–43, using RATT to transfer annotation from a reference genome: allow 90 min (The actual execution time should be
less than 10 min, but it might take more time to locate the EMBL files on public databases and to check the output.)

taBle 2 | Troubleshooting table (continued).

step problem possible reason solution

29 and Box 8 According to the con-
tents of the file ‘Stats.
Mapping.csv’, relatively
low numbers of reads
have mapped

The coverage of the available
reads is not high enough

There is no solution apart from obtaining more reads

According to the con-
tents of the file ‘Stats.
Mapping.csv’, the
number of uniquely
mapped reads is mark-
edly lower than the
number of mapped reads

ICORN may have been executed
with the wrong the insert size

Rerun ICORN with a different (preferably correct) insert
size

ICORN runs through very
quickly, but nothing is
corrected and low or
zero genome coverage
is reported in the file
‘Stats.Mapping.csv’

It may be the case that SSAHA_
pileup crashed, possibly due to a
lack of RAM; alternatively, a read
commonly occurs more than once
in the FASTQ file, which invariably
leads into a crash of SSAHA_pileup

Obtain access to a machine with more RAM, or remove
the problematic read(s) from the FASTQ file

39 and Box 10 Too few annotations are
transferred

Reference and query might be
too distant

The query sequence has significant insertions (or new
plasmids) compared with the nearest reference genome
If multiple genomes exist that may be used as a refer-
ence, then RATT is able to use the best regions of each
reference strain to transfer annotations and the results
are improved. See Box 9 for further information on RATT
transfer parameters and Step 38C

The ‘*.final.embl’ files
are empty even though
the statistics say that
gene models were
transferred

Strange or nonstandard
annotations in the reference
annotation EMBL file

The most important regions to check are the lines that
specify the positions of the features
Edit or remove the nonstandard annotations

The results are incom-
plete or RATT did not
run through all stages

The amount of RAM might not
have been high enough

Obtain access to a machine with more RAM

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1280 | VOL.7 NO.7 | 2012 | nature protocols

Box 3, using ABACAS for primer design: ~15 min
Box 5, using IMAGE to extend seed sequences into longer contigs: ~2 h (15 min to prepare the input files plus ~2 h of
execution time)
Box 7, using ICORN for finding high-quality variants: ~6 h

antIcIpateD results
In this section, we show the output from the test example and present two further use-cases of PAGIT. Further details of
how PAGIT was applied to these examples are given in the supplementary Methods. One of the use-cases involves a
high-quality Illumina lane from E. coli. From the initial assembly of 182 scaffolds, PAGIT ordered 179 scaffolds on the
reference genome, and IMAGE closed more than 60% of the 342 gaps and almost tripled the average contig size from 13.5
to 39.9 kb. With this improved assembly, RATT was then able to transfer 99.47% of the gene models. The second use-case
shows the potential of ICORN to correct 454 homopolymer track errors in a Chlamydia trachomatis assembly52. All genes

28000 28800 29600 30400 31200
gag g

32000 32800 33600 34400

0.0

4.38
3.38

35200

228000 28800
PF3PF3D7

2720026400256002480024000232000

LOCKED

LOCKED

User algorithm from PerfectMapping.ICORN.plot.gz Window size: 1

User algorithm from PerfectMapping.Pf3D7.plot.gz Window size: 1

User algorithm from PerfectMapping.Abacas.plot.gz Window size: 1

22400
PF3D7_0510700

PF3D7_0510700 PF3D7_ PF
32000 32800 33600 34400 35200 36000 36800

0.0

3760

4.48
4.48

3120030400

1

1

4.36

0.0

3.45

Figure 5 | Output of the PAGIT test script displayed in ACT. In this three-way view, different sequences are compared. On top is the ABACAS result, in the
middle the reference genome (P. falciparum 3D7) and at the bottom the final sequence after the application of IMAGE, ICORN and RATT to the ABACAS output
sequence. The orange boxes on the reference are gene models that were transferred by RATT onto the new sequence. In the top sequence the light blue
box shows contigs ordered by ABACAS. The white boxes are sequencing gaps, subsequently closed by IMAGE. The small horizontal blue and green bars are
sequencing reads mapped onto the sequences. Small red spots on the reads indicate base differences between the read and the sequence. The graphs show the
logarithm of the perfect-mapping read coverage. The vertical red bars are BLAST similarity hits between the sequences.

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1281

that had frameshifts as a result of homopolymer tracks could be corrected. In these examples, we used machines with an
Intel processor X5650 (2.67 GHz).

the paGIt test example. The test data set is based on three contigs of a Plasmodium falciparum IT clone and the genome
reference clone 3D7. The PAGIT test example (included in the distribution) is run as described in Steps 2 and 3, and it
invokes all the PAGIT tools. It generates progress reports and a small amount of textual output. Once the script completes,
ACT opens and displays the reads mapped in three ways: against the ABACAS output, the reference genome and the final
annotated new assembly. The results should be similar to Figure 5.

the E. coli example. The PAGIT protocol was applied to a Velvet53 assembly created from reads for E. coli K-12 strain MG1655
as described in the supplementary Methods. In table 3, we show the actual resource requirements in terms of memory,
hard-disk space and timing for each different stage of PAGIT. The memory requirements are mostly quite modest, except for
ICORN: here it is the SSAHA pileup pipeline that has the most demanding memory usage. IMAGE may be time consuming and
may use a relatively high amount of disk space, but this depends on how many iterations are performed: most files can be
deleted from earlier iterations, thus freeing up more disk space if required.

The standard output of ABACAS revealed that 179 sequences (in this case, scaffolds) were ordered against the reference
genome, whereas three scaffolds were placed in the bin. On checking ABACAS output (Box 4), the file ‘U96mapped.gaps.
stats’ showed that 77 gaps were introduced because of overlaps and 102 real gaps were found: the sum of the gaps was
73.1 kb, the largest gap was 4.9 kb and the average gap was 0.5 kb. Viewing the file ‘U96mapped.contigsInbin.fas’ revealed
that the three unmapped scaffolds were in fact very small contigs of no more than a few 100 bp.

Figure 2 shows the number of gaps closed by IMAGE over 18 iterations, and Figure 3 shows how the average contigs size
increases over these iterations. After each change of k-mer, there is a noticeable drop in the number of gaps and a
corresponding increase in the average contig size. By the final iteration, the contig N50 was 81.5 kb, the average contig
size was 39.9 kb and the largest contig was 221.6 kb. These contigs were rescaffolded using the IMAGE ‘contigs2scaffolds.pl’
script before the sequence was corrected using ICORN.

The ICORN output file ‘Stats.Mapping.csv’ (Box 8) shows that 99% of the reads mapped on the first iteration, and this did
not change significantly for subsequent iterations. The file ‘Stats.Correction.csv’ shows that about 50 erroneous SNPs were
corrected over six iterations, with 40 taking place in the first iteration. It is interesting to note that although the same
reads were used for ICORN as for the assembly, errors were still found.

We used the scripts listed in Box 2 to check the coverage of perfectly mapping reads: 99.25% of the consensus sequence was
covered by perfectly mapping reads. The low-coverage regions were converted to gaps, i.e., 4,645 bases were changed to Ns.

RATT standard output (Box 10) indicated that 1.28% of the cor-
rected assembly had no synteny with the reference genome. Of the
4,320 gene models in the reference, 4,297 were correctly trans-
ferred, 22 were not transferred and 1 was partially transferred.

In table 4, we compare the results of correcting the
E. coli assembly using PAGIT to the uncorrected results.
The table is split into two parts. The upper part shows the
results for all annotation elements and the lower part just
for the coding sequences. Each part is broken down into
those annotations that were: entirely transferred; partially

taBle 3 | Requirements for RAM, hard-disk space and timing for
each section of the protocol when applied to E. coli.

E. coli (genome size ~4.7 Mbp)

raM (Gb) Hard disk (Gb) timing (min)

ABACAS 0.02 0.008 <0.5

IMAGE 1.5 40 254 (ite 1)

20 per ite

ICORN 10.3 19 140 per ite

RATT 0.7 0.049 3
For IMAGE and ICORN, timing is given for each iteration (ite).

taBle 4 | Results for RATT, showing the annotations that can be
transferred to the uncorrected assembly and to the PAGIT-corrected
assembly.

elements uncorrected corrected

All annotations 9,885 9,885

Transferred 9,711 9,800

Partially transferred 2 2

Split 188 0

Parts not transferred 175 85

Whole not transferred 172 83

Coding sequences

 All gene models 4,320 4,320

 Transferred 4,269 4,297

 Partially transferred 1 1

 Exons not transferred 1 1

 Whole not transferred 50 22

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1282 | VOL.7 NO.7 | 2012 | nature protocols

transferred; split across scaffolds, parts of which were not transferred; and entirely not transferred. Compared with the
initial assembly, the corrected assembly allowed 89 more annotations to be transferred from the reference, of which 28 were
gene models. The uncorrected assembly also contains 188 annotations that were split across scaffolds: all these disappear in
the corrected version because the initial scaffolds were mapped and ordered (using ABACAS) with the same genome sequence
as that from which the annotations were derived.

To investigate why an annotation transfer failed, a screenshot from ACT is shown in Figure 6. The upper half of the screen
shows the nontransferred annotations. The lower half of the screen indicates the transferred models (these are in blue and
white). In this region, there is a break of synteny, as the sequence of the new assembly is smaller (yellow and pink block),
with the result that the gene models of the reference could not be transferred (white region in the middle of the screen).
Furthermore, this sequence matches several other regions in the reference genome, and thus it is likely to be a repetitive
region, which should be further investigated.

In table 5, we give some assembly statistics to show how the first two stages of the PAGIT protocol are able to improve
the initial assembly. ABACAS is able to map all but three of the initial scaffolds to the reference E. coli sequence, with the
result that the assembly is now almost entirely contained within a single large scaffold. The ordering of scaffolds performed
by ABACAS can be capitalized on by IMAGE. Indeed, there is a real possibility that IMAGE is able to close the gaps between
adjacent scaffolds, as well as the gaps between the contigs comprising the scaffolds. The results of IMAGE are very good:
the number of contigs is reduced by 66%, and their average size has almost tripled. When scaffolding the new set of contigs,
IMAGE uses a standardized gap size between all contigs: this is the cause of the small discrepancy between the N50 scaffold
sizes shown in table 5. Note that there are only four scaffolds, one of which is many orders of magnitude greater than the
others. This means that in this situation the N50 size refers to the size of this single large scaffold.

C. trachomatis 454 assembly example. As a second example, we used a previous 454 assembly of C. trachomatis52. In this
study, the authors manually corrected frameshifts due to homopolymer errors in the sequencing technology. We demonstrate

4039200 4041400 4043600 404580

1

402402160040194004017200

40370004034800403260040304004028200402600040238004021600

21 matches selected

00 3999600 4001800 4004000
fadA fadB

fadArfa

rfa

fre

fre reubiD

ubiDtatD

tatD

tatC

tatC

ta

ta

fadB

4006200 4008400

pepQ

pepQ

yig

yig

trkH

trkH

he

hem Syntem Sy

mobmob

mobmob

yihG

yihG

yihF polA

polA C

yih

yih

yihFdsb

dsb

y: rdoA

rdoAy:

4010600 4012800 4015000

rrlArrsA

Figure 6 | Example of models in the E. coli example that were not transferred in RATT displayed in ACT. The top sequence is the E. coli reference, with models
that could not be transferred, and the bottom sequence is the improved assembly with the transferred annotation. The selected box ‘Synteny‘ indicates that
this region has no synteny with the references. This region is smaller in the new assembly. It is also likely to be repetitive because it has several BLAST hits
(yellow lines) to other positions in the genome.

taBle 5 | Assembly statistics for the initial assembly and the first two stages of PAGIT.

no. of scaffolds n50 scaffolds no. of contigs n50 contigs av. contig largest contig

Velvet 182 70.3 338 33.4 13.5 116.4

PAGIT: ABACAS 4 4,659.5 338 33.4 13.5 116.4

PAGIT: IMAGE 4 4,626.7 115 81.5 39.9 221.6

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.7 NO.7 | 2012 | 1283

how PAGIT is able to automatically perform those manual corrections and generate a high-quality draft genome in less than 3 h,
which is completely functionally annotated, including the identification of problematic regions. Further details of this exam-
ple are given in supplementary Methods.

ABACAS was able to map 7 of 18 of the 454 assembly contigs against the reference genome. These seven contigs cover most
of the reference genome: the sum of all the gaps in the pseudomolecule was 7.5 kb, whereas the sum of the unmapped contigs
was 20 kb. IMAGE was able to close all but one gap. ICORN corrected 2 single base errors, 24 insertions and 57 deletions.

As the focus of this example was to examine how ICORN can correct homopolymer tracks, we used RATT to transfer the annotation
from the reference genome onto the uncorrected assembly and onto the PAGIT improved sequence so that we could compare the
two annotations. Both transfers mapped all gene models completely. When mapping onto the uncorrected assembly, 45 gene models
had frameshifts. When mapping onto the PAGIT assembly, only two genes initially had frameshifts, which were later corrected by
RATT. The impact of ICORN’s corrections is indicated by the fact that RATT was able to immediately transfer 43 of the 45 models
that were frameshifted in the uncorrected assembly. The two models that RATT corrected were output in Artemis-loadable GFF and
tabulator files, ready for visualization and manual checking. Note that RATT is able to conserve the open read frame by splitting the
gene model into two parts (Fig. 7). This is an advantage over ab initio methods that would generate two genes.

0.0

357600357300357000356700356400356100355800355500

mhpA
misc feature

CTLon 0398

1

355200

LOCKED
Query: Flipped

677700 677400

User algorithm from Res.image.fa.4.perfectMapping.ordered AM884177.plot.gz Window size: 3

User algorithm from 454LargeContigs.fna.perfectMapping.contig00315.plot Window size: 3
5.66
4.56

mhpA
misc feature

677100 676800 676500 676200 675900 675600

6.51
4.59

0.0

CTLon 0398

Figure 7 | View of an example of a frameshift in a gene model, visualized using ACT. At the top is one of the original 454 contigs, and at the bottom is the
corrected sequence. In the 454 assembly, the gene model in the middle has a frameshift: an indel has broken the conceptual open reading frame. The top
graph shows the logarithms of the coverage of perfect-mapping reads. Over this position there is a sink in the coverage, compared with the graph over the
corrected sequence. Therefore, because of the change, the frameshift has been corrected.

Note: Supplementary information is available in the online version of the paper.

acknoWleDGMents We thank L. Chappel for testing and checking the protocol;
T. Carver for helping with the installation of the Virtual Machine; and M. Hunt for
testing the virtual machine. T.D.O. was supported by the European Union 7th
framework European Virtual Institute of Malaria Research (EVIMalaR); I.J.T., S.A.A.
and M.B. were supported by the Wellcome Trust (grant number: 098051).

autHor contrIButIons M.T.S., T.D.O., C.N. and M.B. conceived and
executed the examples. T.D.O., M.T.S., I.J.T. and S.A.A. conceived and wrote
the installation procedures. All authors were involved with the writing of the
manuscript.

coMpetInG FInancIal Interests The authors declare no competing financial
interests.

http://www.nature.com/doifinder/10.1038/nprot.2012.068

©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1284 | VOL.7 NO.7 | 2012 | nature protocols

Published online at http://www.nature.com/doifinder/10.1038/nprot.2012.068.
Reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Chain, P.S. et al. Genome project standards in a new era of sequencing.
Science 326, 236–237 (2009).

2. International Human Genome Sequencing Consortium. Finishing the
euchromatic sequence of the human genome. Nature 431, 931–945
(2004).

3. Brent, M.R. Steady progress and recent breakthroughs in the accuracy of
automated genome annotation. Nat. Rev. Genet. 9, 62–73 (2008).

4. Pruitt, K.D., Tatusova, T., Brown, G.R. & Maglott, D.R. NCBI reference
sequences (RefSeq): current status, new features and genome annotation
policy. Nucleic Acids Res. 40, D130–D135 (2012).

5. Salzberg, S.L. et al. GAGE: a critical evaluation of genome assemblies and
assembly algorithms. Genome Res. 22, 557–567 (2012).

6. Narzisi, G. & Mishra, B. Comparing de novo genome assembly: the long
and short of it. PLos ONE 6, e19175 (2011).

7. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol.
26, 1135–1145 (2008).

8. Zhang, J., Chiodini, R., Badr, A. & Zhang, G. The impact of next-
generation sequencing on genomics. J. Genet. Genomics 38, 95–109
(2011).

9. Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation
genome sequence assembly. Nat. Methods 8, 61–65 (2011).

10. Miller, J.R., Koren, S. & Sutton, G. Assembly algorithms for next-
generation sequencing data. Genomics 6, 315–327 (2010).

11. Treangen, T.J., Sommer, D.D., Angly, F.E., Koren, S. & Pop, M. Next
generation sequence assembly with AMOS. Curr. Protoc. Bioinform. 33,
11.8.1–11.8.18 (2011).

12. Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing
technologies. Curr. Protoc. Bioinform. 31, 11.5.1–11.5.12 (2010).

13. Assefa, S., Keane, T.M., Otto, T.D., Newbold, C. & Berriman, M. ABACAS:
algorithm-based automatic contiguation of assembled sequences.
Bioinformatics 25, 1968–1969 (2009).

14. Tsai, I.J., Otto, T.D. & Berriman, M. Improving draft assemblies by
iterative mapping and assembly of short reads to eliminate gaps. Genome
Biol. 11, R41 (2010).

15. Otto, T.D., Sanders, M., Berriman, M. & Newbold, C. Iterative correction of
reference nucleotides (iCORN) using second generation sequencing
technology. Bioinformatics 26, 1704–1707 (2010).

16. Otto, T.D., Dillon, G.P., Degrave, W.S. & Berriman, M. RATT: Rapid
Annotation Transfer Tool. Nucleic Acids Res. 39, e57 (2011).

17. Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical
interventions. Science 331, 430–434 (2011).

18. Downing, T. et al. Whole genome sequencing of multiple Leishmania
donovani clinical isolates provides insights into population structure and
mechanisms of drug resistance. Genome Res. 21, 2143–2156 (2011).

19. Rogers, M.B.H. et al. Chromosome and gene copy number variation allow
major structural change between species and strains of Leishmania.
Genome Res. 21, 2129–2142 (2011).

20. Protasio, A. et al. A systematically improved high quality genome and
transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl.
Trop. Dis. 6, e1455 (2012).

21. Kikuchi, T. et al. Genomic insights into the origin of parasitism in the
emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 7,
e1002219 (2011).

22. Olson, P.D., Zarowiecki, M., Kiss, F. & Brehm, K. Cestode genomics—
progress and prospects for advancing basic and applied aspects of
flatworm biology. Parasite Immunol. 34, 130–150 (2011).

23. Heilbronner, S. et al. Genome sequence of Staphylococcus lugdunensis
N920143 allows identification of putative colonization and virulence
factors. FEMS Microbiol. Lett. 322, 60–67 (2011).

24. Omer, H. et al. Genotypic and phenotypic modifications of Neisseria
meningitidis after an accidental human passage. PLoS One 6, e17145
(2011).

25. Petty, N.K. et al. Citrobacter rodentium is an unstable pathogen showing
evidence of significant genomic flux. PLoS Pathog. 7, e1002018 (2011).

26. Stabler, R.A. et al. Comparative genome and phenotypic analysis of
Clostridium difficile 027 strains provides insight into the evolution of a
hypervirulent bacterium. Genome Biol. 10, R102 (2009).

27. Kurtz, S. et al. Verstile and open software for comparing large genomes.
Genome Biol. 5, R12 (2004).

28. Carver, T.B. et al. Artemis and ACT viewing, annotation and comparing
sequences stored in relational database. Bioinformatics 24, 2672–2676 (2008).

29. Koressaar, T. & Remm, M. Enhancements and modifications for primer
design program Primer3. Bioinformatics 23, 1289–1291 (2007).

30. Galardini, M., Biondi, G., Bazzicalupo, M. & Mengoni, A. CONTIGuator: a
bacterial genomes finishing tool for structural insights on draft genomes.
Source Code Biol. Med. 6, 11 (2011).

31. van Hijum, S., Zomer, A., Kuipers, O. & Kok, J. Projector 2: contig
mapping for efficient gap-closure of prokaryotic genome sequence
assemblies. Nucleic Acid Res. 33, W560–W566 (2005).

32. Richter, D., Schuster, S. & Huson, D. OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics 23, 1573–1579 (2007).

33. Husemann, P. & Stoye, J. r2cat: synteny plots and comparative assembly.
Bioinformatics 26, 570–571 (2010).

34. Li, R. et al. The sequence and de novo assembly of the giant panda
genome. Nature 463, 311–317 (2010).

35. Yao, G. et al. Graph accordance of next-generation sequence assemblies.
Bioinformatics 28, 13–16 (2012).

36. Zimin, A.V., Smith, D.R., Sutton, G. & Yorke, J.A. Assembly reconciliation.
Bioinformatics 24, 42–45 (2008).

37. Yang, X., Medvin, D., Narasimham, G., Yoder-Himes, D. & Lory, S. CloG: a
pipeline for closing gaps in a draft assembly using short reads. in 2011
IEEE 1st International Conference on Computational Advances in Bio and
Medical Sciences (Orlando, Florida) 202–207 (IEEE, 2011).

38. Pop, M., Kosack, D. & Salzberg, S. Hierarchical scaffolding with bambus.
Genome Res. 14, 149–159 (2004).

39. Dayarian, A., Michael, T. & Sengupta, A. SOPRA: scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinformatics 11, 345
(2010).

40. Boetzer, M., Henkel, C., Jansen, H., Butler, D. & Pirovano, W. Scaffolding
pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

41. Gao, S., Nagarajan, H. & Sung, W. Opera: reconstructing optimal genomic
scaffolds using pair-end sequences. Res. Comput. Mol. Biol. 6577,
437–451 (2011).

42. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genome Res.
11, 3–11 (2001).

43. Ning, Z., Cox, A. & Mullikin, J. SSAHA: a fast search method for large
DNA databases. Genome Res. 11, 1724–1729 (2001).

44. Manske, H. & Kwiatkowski, D. SNP-o-matic. Bioinformatics 25, 2434–2435
(2009).

45. Gajer, P.S., Schatz, M. & Salzberg, S.L. Automated correction of genome
sequence errors. Nucleic Acids Res. 32, 562–569 (2004).

46. Dutilh, B.H., Huynen, M.A. & Strous, M. Increasing the coverage of a
metapopulation consensus genome by iterative read mapping assembly.
Bioinformatics 25, 2878–2881 (2009).

47. Hubbard, T.J. et al. Ensembl 2009. Nucleic Acid Res. 37, D690–D697
(2009).

48. Davila, S.M. et al. GARSA: genomic analysis resources for sequence
annotation. Bioinformatics 21, 4302–4303 (2005).

49. Almeida, L. et al. A system for automated bacterial (genome) integrated
annotation—SABIA. Bioinformatics 20, 2832–2833 (2004).

50. Markowitz, V.M. et al. The integrated microbial genomes system: an
expanding comparative analysis resource. Nucleic Acids Res. 38,
D382–D390 (2010).

51. Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction
in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 22,
W465–W467 (2005).

52. Thomson, N.R.H. et al. Chlamydia trachomatis: genome sequence analysis
of lymphogranuloma venereum isolates. Genome Res. 18, 161–171 (2008).

53. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

54. Phillippy, A., Schatz, M.C. & Pop, M. Genome assembly forensics: finding
the elusive mis-assembly. Genome Biol. 9, R55 (2008).

http://www.nature.com/doifinder/10.1038/nprot.2012.068

