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Preface 

At various times  I have taught  population genetics in two- to five-week chunks. 
This is precious little  time in which to teach a subject, like population  genetics, 
that  stands  quite  apart from the rest of biology in the way that  it makes scientific 
progress. As there  are no  textbooks  short enough for these  chunks, I wrote a 
Minimalist's  Guide t o  Population  Genetics. In  this 21-page guide I attempted  to 
distill  population genetics down to  its essence. This  guide was, for me,  a  central 
canon of the  theoretical side of the field. The minimalist  approach of the guide 
has been retained  in  this,  its expanded  incarnation. My goal has been to focus 
on that  part of population genetics that is central  and incontrovertible.  I feel 
strongly that a student who understands well the core of population  genetics 
is much better equipped to understand evolution than is one who understands 
less well each of a greater  number of topics. If this book is mastered,  then  the 
rest of population  genetics should be approachable. 

Population genetics is concerned with the genetic basis of evolution. It 
differs from much of biology in that  its  important insights are  theoretical  rather 
than observational or experimental. It could hardly  be otherwise. The  objects 
of study  are primarily the frequencies and fitnesses of genotypes in natural 
populations.  Evolution is the change in the frequencies of genotypes through 
time,  perhaps  due to their differences in fitness. While genotype frequencies 
are easily measured,  their change is not.  The  time scale of change of most 
naturally  occurring  genetic  variants is very long,  probably  on the order of tens 
of thousands to millions of years.  Changes this slow are impossible to  observe 
directly. Fitness differences between genotypes,. which may be responsible for 
some of the frequency changes, are so extraordinarily  small,  probably less than 
0.01 percent, that  they  too  are impossible to measure  directly.  Although we can 
observe the  state of a population,  there really is no way to  explore  directly the 
evolution of a population. 

Rather, progress is made  in  population genetics by constructing  mathemati- 
cal models of evolution,  studying  their  behavior, and  then checking whether the 
states of populations  are compatible  with this behavior.  Early in the history of 
population  genetics,  certain models exhibited  dynamics that were of such obvi- 
ous universal importance that  the fact that  they could not  be directly verified in 
a natural  setting seemed unimportant.  There is no better example than genetic 
drift, the small random changes in  genotype frequencies caused by variation  in 
offspring  number between individuals and,  in diploids,  genetic  segregation. Ge- 

xi 



xii Preface 

netic drift is  known to operate on a time scale that is proportional to  the size of 
the population. In a species with a million individuals, it takes roughly a million 
generations for genetic drift to change allele frequencies appreciably. There is 
no conceivable way of verifying that genetic drift changes allele frequencies in 
most natural populations. Our understanding that  it does is entirely  theoretical. 
Most population geneticists not only are comfortable with this  state of affairs 
but also revel in the fact that they can demonstrate on the back of an envelope, 
rather  than in the laboratory, how a significant evolutionary force operates. 

As most of the  important insights of population genetics came initially from 
theory, so too is this  text driven by theory. Although many of the chapters begin 
with an observation that sets the biological context for what follows, the signif- 
icant concepts first appear  as ideas about how evolution ought to proceed when 
certain  assumptions are  met. Only after the theoretical ideas are in hand does 
the  text focus on the application of the theory to an issue raised by experiments 
or observations. 

The discussions of many of these issues are based on particular  papers from 
the  literature.  I chose to use papers  rather than my  own summary of several 
papers to involve the reader as quickly as possible with the original literature. 
When  I  teach  this  material, I require that  both  graduate  and  undergraduate 
students  actually read the papers. Although this book describes many of the 
papers in detail,  a deep understanding can only come from a direct reading. 
Below  is a list of the papers in the order that they  appear in the  text, I encourage 
instructors to make the  papers available to their  students. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

CLAYTON,  G. A. ,  MORRIS, J. A . ,  AND ROBERTSON, A.  1957. An exper- 
imental check on quantitative genetical theory. 11. Short-term responses 
to selection. J. Genetics 55:131-151. 

CLAYTON, G.  A . ,  AND ROBERTSON, A. 1955. Mutation  and  quantitative 
variation. Amer.  Natur. 89:151-158. 

GREENBERG, R., AND CROW, J.  F. 1960. A comparison of the effect 
of lethal  and  detrimental chromosomes from Drosophila populations. Ge- 
netics 45:1153-1168. 

HARRIS, H. 1966. Enzyme polymorphisms in man. Proc. Roy. Soc. Ser. 
B 164:298-310. 

KIMURA, M., AND OHTA, T. 1971. Protein polymorphism as a phase of 
molecular evolution. Nature 229:467-469. 

KIRKPATRICK,  M., AND JENKINS, c. D. 1989. Genetic segregation and 
the maintenance of sexual reproduction. Nature 339:300-301. 

KONDRASHOV, A. 1988. Deleterious mutations  and the evolution of sexual 
reproduction. Nature 336:435-440. 

KREITMAN, M. 1983. Nucleotide polymorphism at  the alcohol dehydro- 
genase locus of Drosophila melanogaiter.  Nature 304:412-417. 
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Xlll 

9. MORTON, N. E., CROW, J. F., AND MULLER, H. J .  1956. An estimate 
of the mutational  damage in man from data on  consanguineous  marriages. 
Proc. Natl. Acad.  Sci.  USA 42:855-863. 

Each  chapter  contains a short overview of what is to  follow, but  these 
overviews are sometimes incomprehensible until the chapter  has been read  and 
understood. The reader should return  to  the overview after  mastering the chap- 
ter  and enjoy the experience of understanding  what was previously mysterious. 
Each chapter of the  text builds on the previous ones. A few sections  contain 
more advanced material, which is not used in  the  rest of the book and could be 
skipped  on  a  first  reading;  these are sections 2.6, 2.7, 3.8,  5.4, and 5.5. Certain 
formulae are placed in boxes. These  are those  special  formulae that play such 
a  central role in  population genetics that  they almost define the way most of 
us think  about evolution.  Everyone  reading this book should  make the boxed 
equations  part of their  being. 

Problems have been placed within the  text  at  appropriate  spots. Some are 
meant to  illuminate  or reinforce what  came before. Others  let the reader  explore 
some new ideas. Answers to all but  the most  straightforward  problems  are given 
at  the end of each chapter. 

The prerequisites for this  text include Mendelian genetics, a smattering of 
molecular genetics,  a facility with  simple  algebra, and a firm grasp of elementary 
probability  theory. The appendices  contain  most of what is needed in the way 
of mathematics,  but  there is no  introduction to genetics. With so many good 
genetics texts available at all levels, it seemed silly to provide a cursory overview. 

Many people have made significant contributions to this  book. Among the 
students who suffered through  earlier drafts I would like to single out  Suzanne 
Pass, who gave me pages of very detailed  comments that helped me find clearer 
ways of presenting  some of the  material  and gave me  some  understanding of how 
the book sells to  a bright  undergraduate. Dave Cutler was my graduate  teaching 
assistant for a 10-week undergraduate  course  based  on  an  early  draft.  In  addition 
to many  invaluable  comments, Dave also  wrote  superb answers to many of 
the problems. Other  students who provided helpful comments  included Joel 
Kniskern, Troy Thorup, Jessica  Logan,  Lynn  Adler,  Erik Nelson, and Caroline 
Christian. I regret that  the names of a few others may have disappeared  in the 
clutter on my desk. You have my thanks anyway. 

Chuck Langley taught a five-week graduate course out of the  penultimate 
draft. He not only found  many  errors and ambiguities but also made the ge- 
netics much more precise. Me1 Green helped in the same way after a thorough 
reading from cover to  cover (not  bad for a man who looks on  most of populzlr 
tion genetics with  skepticism!). Michael Turelli answered innumerable  questions 
about  quantitative genetics, including the one whose answer I hated: Is this 
how you  would teach  quantitative genetics? Monty Slatkin  made  many helpful 
suggestions based  on  a very early version. David Foote provided the  data for 
Figure 5.1 
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Finally, my greatest  debt is to my wife, Robin Gordon, who not only encour- 
aged me during the writing of this book but also edited the entire  manuscript. 
More important, she has always been my model of what a teacher should be. 
Whatever success I may have had in teaching population genetics has been in- 
spired in no small part by her.  In keeping with the  tradition established in my 
previous book of dedications to great  teachers, I dedicate  this one to her. 
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Chapter 1 

The Hardy-Weinberg Law 

Population geneticists spend most of their  time doing one of two things: de- 
scribing the genetic structure of populations or theorizing on the evolutionary 
forces acting on populations. On a good day, these two activities mesh and  true 
insights emerge. In this  chapter, we  will do all of the above. The first part of 
the  chapter  documents the  nature of genetic variation at  the molecular level, 
stressing the  important point that  the variation between individuals within a 
species is similar to  that found between species. After a short terminologic di- 
gression, we begin the theory with the  traditional  starting point of population 
genetics, the Hardy-Weinberg law, which describes the consequences of random 
mating  on allele and genotype frequencies. Finally, we see that  the genotypes 
at a particular locus do fit the Hardy-Weinberg expectations  and conclude that 
the  population  mates randomly. 

No one knows the genetic structure of any species. Such  knowledge  would 
require a complete description of the genome and  spatial location of every indi- 
vidual at one instant in time.  In the next instant,  the description would change 
as new individuals are  born, others die, and most move,  while their transmitted 
genes mutate  and recombine. How, then,  are we to proceed with a scientific 
investigation of evolutionary genetics when we cannot describe that which in- 
terests us the most? Population geneticists have achieved remarkable success 
by choosing to ignore the complexities of real populations  and focusing on the 
evolution of one or a few loci at a  time in a population that is assumed to  mate 
at random or, if subdivided, to have a simple migration pattern.  The success of 
this  approach, which  is  seen in both  theoretical  and  experimental  investigations, 
has been impressive, as  I hope the reader will agree by the end of this book. 
The approach is not  without its detractors. Years ago, Ernst Mayr mocked 
this  approach  as  “bean  bag genetics.” In so doing, he echoed a view held by 
many of the pioneers of our field that  natural selection acts on highly interac- 
tive coadapted genomes  whose evolution cannot  be  understood by considering 
the evolution of a few loci in isolation from all others. Although genomes are 
certainly coadapted,  there is precious little evidence that  there  are  strong inter- 
actions between most polymorphic alleles  in natural  populations. The modern 
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2 The Hardy-Weinberg Law 

view, spurred  on by the  rush of  DNA sequence data, is that we can profitably 
study loci  in isolation. 

This  chapter begins with a description of the genetic structure of the alcohol 
dehydrogenase locus, ADH, in Drosophila. ADH is but one locus in one species. 
Yet, its genetic structure is typical in most regards.  Other loci  in Drosophila 
and in other species may differ quantitatively, but not in their gross features. 

1.1 D N A  variation  in  Drosophila 

Although population genetics is concerned mainly with genetic variation within 
species, until recently only genetic variation with major morphological manifes- 
tations, such as visible, lethal, or chromosomal mutations, could be analyzed 
genetically. The bulk of genetically based variation was refractory to  the most 
sensitive of experimental protocols. Variation was  known to exist because of the 
uniformly high heritabilities of quantitative  traits;  there was simply no way to 
dissect it. 

Today, all this  has changed. With readily available polymerase chain reac- 
tion (PCR)  kits,  the  appropriate primers, and a sequencing machine, even the 
uninitiated  can soon obtain DNA sequences from several alleles in their favorite 
species. In fact, sequencing is so easy that  data  are accumulating  more  rapidly 
than they can be  interpreted. 

The 1983 paper “Nucleotide polymorphism at  the alcohol dehydrogenase 
locus of Drosophila melanogaster,” by Marty  Kreitman, was a milestone in evo- 
lutionary genetics because it was the first to describe sequence variation in a 

~ sample of alleles obtained from nature. At the  time,  it represented a prodigious 
amount of work. Today, a mere 13 years later,  an  undergraduate could complete 
the  study in a few  weeks. The alcohol dehydrogenase locus in D.  melanogaster 
has the typical exon-intron structure of eukaryotic genes. Only the 768 bases of 
the coding sequence are given  in Figure 1.1, along with its  translation. 

Kreitman sequenced 11 alleles from Florida (Fl), Washington (Wa), Africa 
(Af), Japan (Ja), and France (Fr). When the sequences were compared base by 
base, it  turned  out  that they were not all the same. In  fact, no two alleles had 
exactly the same DNA sequence, although within just  the coding sequences, as 
illustrated in Figure 1.1, some  alleles did have the same sequence. 

Within the coding region of the 11 ADH alleles, 14 sites have two alternative 
nucleotides. These  are listed in Table 1.1 and  their positions are illustrated in 
Figure 1.1. A site with different nucleotides in independently sampled alleles  is 
called a segregating site; less often, it is called a polymorphic site.  About  1.8 of 
every 100 sites are segregating in the ADH sample, a figure that is typical for 
D. melanogaster loci. The variation at 13,of  the 14 segregating sites is silent, 
so called because the alternative codons code for the  same  amino  acid. The 
variation at  the 578th nucleotide position results in a change of the amino acid 
at position 192  in the protein, where either a lysine (AAG)  or a threonine (ACG) 
is found. A nucleotide polymorphism that causes an  amino acid polymorphism 



1.1 DNA variation in Drosophila 3 

l g 
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361 t a 
ctg.gac.ttc,tgg.gac.aag.cgc.aag.ggc.ggt.ccc.ggt.ggt.atc.atc.tgc.aac.att.gga,tcc 
Leu.Asp.Phe.Trp.Asp.Lys.Arg.Lys,Gly.Gly.Pro.Gly.Gly.Ile.Ile.Cys.Asn.Ile.Gly.Ser 
421 a 
gtc.act.gga.ttc.aat.gcc.atc.tac.cag.gtg.ccc.gtc.tac.tcc.ggc.acc,aag.gcc.gcc.gtg 
Val.Thr.Gly.Phe.Asn.Ala.Ile.Tyr.Gln.V~l,Pro.Val.Tyr.Ser.Gly.Thr,Lys.Ala.Ala,Val 
481 a C g t 
gtc.aac.ttc.acc.agc.tcc.ctg.gcg.aaa.ctg.gcc,ccc.att,acc.ggc,gtg.acc.gct.tac.acc 
Val.Asn.Phe.Thr.Ser.Ser.Leu.Ala.Lys.Leu.Ala.Pro.Ile.Thr.Gly,Val.Thr.Ala.Tyr.Thr 
541 C 

gtg.aac,ccc.ggc.atc.acc.cgc.acc.acc.ctg.gtg.cac.aag.ttc.aac.tcc.tgg.ttg.gat.gtt 
Val.Asn.Pro.Gly.Ile.Thr.Arg.Thr.Thr.Leu.Val.His.Lys.Phe.Asn.Ser.Trp.Leu.Asp.Va1 
601 t C C 

gag.ccc.cag.gtt.gct.gag.aag.ctc.ctg.gct.cat.ccc.acc.chg.cca.tcg,ttg.gcc.tgc.gcc 
Glu.Pro.Gln.Val.Ala.Glu,Ly~,Leu.Leu.Ala.His,Pro.Thr.Gln,Pro.Ser.Leu,Ala.Cys.Ala 
661 a 
gag.aac.ttc.gtc,aag.gct.atc.gag.ctg.aac.cag.aac.gga,gcc.atc.tgg.aaa.ctg.gac.ctg 
Glu.Asn.Phe.Val.Lys.Ala.Ile.Glu.Leu.Asn.Gln.Asn.Gly.Ala.1le.Trp.Lys.Leu.Asp.Leu 
721 
ggc.acc.ctg.gag.gcc.atc.cag.tgg.acc.aag.cac.tgg.gac.tcc.ggc.atc, 
Gly.Thr.Leu.Glu.Ala.Ile,Gln.Trp.Thr.Lys.His.Trp~Asp.Ser~Gly.Ile. 

Figure 1.1: The DNA sequence for the coding region of the reference allele from  the 
alcohol dehydrogenase locus of Drosophila waelanogaster. The  translation, given below 
the DNA sequence, uses the  three-letter codes for amino acids. The  letters over certain 
bases indicate  the  variants for those nucleotides found in a sample  from nature.  The 
variant at position 578 changes the  amino acid of its codon from lysine to  threonine. 
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Allele 
Reference 

39 226 387  393  441 513 519 531 540  578  606  615  645  684 

G . . A .   . G T C T C C .  Ja-F 
G . .  . . . .  G T C T C C .  Af-F 
G . . .   . . .  G T C T C C .  Wa-F 
G .  S .  . . .  G T C T C C .  Fr-F 
G . .  . . .  . G T C T C C .  F1-F 
G . .  . * .  . T . T . C A  Ja-S 
G . .  * .  F1-2S 
. . . . . . .  . A  Fr-S 
* .  . . .  . .  . A  Af-S 
. T T . A A C . . .  F1- 1 S 
. T T . A A C . .  . . . .  Wa-S 
T C  C  C  C  C T C  C A C T A G 

Table 1.1: The 11 ADH alleles. A dot is placed  when a nucleotide is the  same  as  the 
nucleotide  in the reference  sequence. The  numbers refer to  the position  in the coding 
sequence  where the 14 variant  nucleotides  are  found  (see  Figure 1.1). The first two 
letters of the allele name  identify the place of origin. The S alleles have a lysine at 
position 192 of the  protein;  the F alleles have a threonine. 

is called a replacement polymorphism.* 
Kreitman’s data pose a question which is the  Great Obsession of population 

geneticists: What evolutionary forces could have  led to such divergence between 
individuals within the same species? A related question that sheds light on the 
Great Obsession  is:  Why the preponderance of silent over replacement poly- 
morphisms? The  latter question is more compelling  when  you consider that 
about  three-quarters of random changes in a typical DNA sequence will cause 
an amino acid change. Rather than 75 percent of the segregating sites being 
replacement, only 7 percent are replacement. Perhaps silent variation is more 
common because it  has a very small effect  on the phenotype. By contrast,  a 
change in a  protein could radically alter  its function. Alcohol dehydrogenase is 
an  important enzyme because flies and  their larvae are often found in ferment- 
ing fruits with a high alcohol concentration. Inasmuch as alcohol dehydrogenase 
plays a role in the detoxification of ingested alcohol, a small change in the pro- 
tein could have substantial physiologic  consequences. Thus,  it is reasonable 
to suggest that selection on amino acid variation in proteins will be stronger 
than on silent variation and that  the stronger selection might reduce the level 
of polymorphism. This is a good suggestion, but  it is  only a suggestion. Pop- 
ulation geneticists take such suggestions and turn them  into  testable scientific 
hypotheses, as will be seen as  this book unfolds. 

Just  as there is ADH variation within species, so too is there variation 
between species, as illustrated in Figure 1.2. In this figure, the coding region of 
the ADH locus in D. melanogaster is compared to  that of the closely related 

*Some people  use synonymous and nonsynonymous as synonyms for silent and replace- 
ment, respectively. 
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species, D. erecta. Thirty-six of 768 nucleotides differ between the two species. 
The probability that a randomly chosen site is different is 36/768 = 0.0468; 
note that  this is also the average  number of nucleotide differences per  site. Of 
the 36 differences, only 10 (26%) result in amino acid differences between the 
two species. Kreitman's  polymorphism data also exhibited less replacement 
than silent variation, but  the  disparity was somewhat  greater:  one  replacement 
difference out of 14 (7%) segregating  sites. 

The comparison of variation  within and between species shows no  striking 
lack of congruence.  In both cases, all of the differences involve only isolated 
nucleotides and, in both cases, there  are more silent than replacement  changes. 
Things could have been otherwise. For example, the variation  within species 
could have involved isolated nucleotide changes while the differences between 
species could have been due to insertions and deletions. Were this  observed, then 
the variation  within species would have little to contribute to our  understanding 
of evolution in the broader sense. As it is,  population  geneticists feel confident 
that their  studies of variation  within  populations play a key role in the wider 
discipline of evolutionary biology. 

Molecular variation  may seem far removed from what  interests  most evolu- 
tionists. For many, the allure of evolution is the  understanding of the processes 
leading to  the  strange  creatures of the  past  or  the sublime adaptations of mod- 
ern species. The raw material of this  evolution, however, is just  the  sort of 
molecular variation  described  above.  Later in the book, we will be examining 
genetic variation  in fitness traits,  as  illustrated  in Figure 3.6, and  in  quantitative 
traits,  as  illustrated in Figure 5.1. This genetically determined var'iation must 
ultimately  be  due to  the kind of molecular variation observed at  the ADH locus. 
As  of this  writing, the connections between molecular variation and  phenotypic 
variation have not been made.  The discovery of these  connections  remains  one 
of the  great frontiers of population genetics. Of particular  interest  in  this  en- 
deavor will be  the relative roles played by variation  in coding regions, as seen 
in the ADH example; and variation in the control regions just  upstream from 
coding regions. 

1.2 Loci and alleles 

We must now make a short digression into  vocabulary  because  two  words, locus 
and allele, must be  made more precise than is usual in genetics textbooks. 
Although the  terms were used without  ambiguity for many  years, the increase 
in our  understanding of molecular genetics has clouded their  original  meanings 
considerably. Here we will use locus to refer to  the place on a chromosome where 
an allele resides. An allele is just  the  bit of DNA at that place. A locus is a 
template for an allele. An allele is an  instantiation  of-a locus. A locus is not 
a  tangible  thing;  rather,  it is a map describing where to  find a  tangible  thing, 
an allele, on a chromosome. (Some books use gene as a synonym for our allele. 
However, gene has been used in so many different contexts that  it is not very 
useful for our  purposes.) With  this convention, a diploid individual  may be said 
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atg.tcg.ttt.act.ttg.acc.aac,aag.aac,gtg.att,ttc.gtt,gcc.ggt.ctg.gga.ggc.att.ggt 
. g a . c , c . .  . . .  . C . .  , g . .  . . . .  . c  
.Ala. . . . . . . . . . . . . . . . . .  

ctg.gac.acc.agc.aag.gag.ctg.ctc.aag.cgc.gat,ctg.aag,aac.ctg.gtg,atc.ctc.gac.cgc 

. . . . . .  .Val. . . . . . . . . . . .  

. . . . . .  . g .  a t .  . . . . . . . . .  

att.gag.aac.ccg.gct.gcc,att.gcc.gag.ctg.aag.gca.atc.aat.cca.aag.gtg.acc.gtc.acc . . . .  C . , , , . . . . . . . , . . .  . . . . . . . . . . . . . . . . . . .  
ttc,tac.ccc.tat.gat,gtg.acc,gtg.ccc,att.gcc.gag.acc.acc.aag.ctg.ctg.aag.acc.atc . t. . . . . . . . . . .  . g .  . .  c .  . .  . . . . . . . . . . . .  .Ser. . . . . .  
ttc.gcc.cag.ctg.aag.acc,gtc.gat.gtc.ctg.atc.aac.gga.gct.ggt.atc,ctg.gac.gat.cac 

. . a .  . c .  . . . . . . . . . . . . .  .t 

. .Lys. .Thr. . . . . . . . . . . . . .  .Tyr 

cag,atc.gag.cgc.acc,att.gcc,gtc.aac.tac.act.ggc.ctg.gtc.aac.acc.acg.acg.gcc.att 
. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

ctg,gac.ttc,tgg.gac.aag.cgc.aag.ggc.ggt.ccc,ggt.ggt,atc.atc.tgc,aac.att.gga.tcc 
. . . . . . . . . . . .  c .  t. . . . . .  . . . . . . . . . . . . . . . . . . .  

gtc.act.gga.ttc.aat,gcc.atc,tac.cag,gtg.ccc.gtc.tac.tcc,ggc.acc.aag.gcc.gcc.gtg 
g . ,  . . . . . . . . . .  . t . .  . . t . .  
. . . . . . . . . . . . . . . . . . . .  

gtc.aac.ttc.acc.agc.tcc,ctg.gcg.aaa.ctg.gcc.ccc.att.acc.ggc.gtg,acc.gct.tac.acc . . . . . . . . . . .  . C . ' .  . . .  . t .  . . . . . . . . . . . . . . . . . . .  
gtg,aac.ccc.ggc.atc.acc.cgc,acc.acc,ctg.gtg,cac.aag.ttc.aac.tcc.tgg.ttg.gat.gtt 

. . . . . . . . . . . . . . . .  . C . .  . . . . . . . . . . . . . . . . . . .  
gag.ccc.cag.gtt.gct.gag.aag.ctc.ctg.gct.cat.ccc.acc.cag.cca.tcg.ttg.gcc,tgc,gcc . . .  g. c .  . . . . . . . .  . a c .  . .t . .  . . . . . . . . . . . . .  .Thr. . .Ser. . 
gag.aac.ttc.gtc.aag.gct.atc.gaa.ctg.aac.cag.aac.gga,gcc.atc.tgg,aaa.ctg.gac.ctg . . t o .  , c .  . g . .  . g .  . t . .  . . . . .  . . . . . . . . .  .Glu. . . . . . . . .  
ggc.acc.ctg.gag.gcc.atc.cag.tgg.acc.aag.cac,tgg,gac,tcc,ggc.atc. 

. . . .  . ,  . a. . g .  . . . . . . .  

. . . . . . .  .Ser. . . . . . . .  

Figure 1.2: The DNA sequence for D. waelanogaster ADH with those baaes and  amino 
acids that differ in D. erecto shown  below. The erecto sequence  is from Jeffs et  al. 
(1994). 
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to have  two  alleles at a particular autosomal locus, one from its mother and  the 
other from its  father. 

Population genetics, like other  areas of genetics, is  concerned with alleles that 
differ one from another. However, in population genetics there  are  subtleties 
in what is meant by  “different  alleles.” There  are  three  fundamental ways in 
which  alleles at  the same locus  may  differ: 

By origin. Alleles  differ  by origin if they come  from the same locus  on different 
chromosomes.  One often refers to a sample of n (different) alleles from 
a population. What is meant by “different” in this context is “different 
by origin.” For example, the two  alleles at a specified locus in a diploid 
individual are always  different by origin. The 11 alleles in Kreitman’s 
sample also  differ  by origin. 

B y  state. Whether or not two  alleles are said to differ  by state depends on 
the  context. If the context is the DNA sequence of the alleles, then  they 
are different  by state if they have  different DNA sequences. The difference 
may as small as one nucleotide out of thousands. However, in evolutionary 
studies we frequently focus  on particular aspects of alleles and may  choose 
to put  them in different states depending on the  nature of the difference. 
For example, if our interest is  in protein evolution, we may  choose to say 
that two  alleles are different by state if and only if they differ in their 
amino acid sequences. (We do this in full recognition that some  alleles 
with the same amino acid  sequence  may  have  different DNA sequences 
as a consequence of the redundancy of the genetic code.) Similarly, we. 
may  choose to call two  alleles  different by state if and only if they have 
different amino acids at a  particular  site,  perhaps at  the fourth position 
in the protein.  States may also be thought of as phenotypes, which could 
include the DNA sequence, the protein sequence, the color of the pea, or 
other genetically determined phenotypes of interest. 

B y  descent. Alleles  differ  by descent when they do not  share a common an- 
cestor allele. Strictly speaking, two  alleles from the same locus can never 
be  different by descent as all contemporary alleles share a remote com- 
mon ancestor. In practice, we are often concerned with a relatively short 
time in the past  and  are content to say that two  alleles are different by 
descent if they do not  share a common ancestor allele in, say, the  past 10 
generations. Two  alleles that are different by descent may or may not  be 
different by state because of mutation. Difference  by descent will not be 
used until Section 4.2. 

The converse of the above involves identity by origin, state, or descent.Alleles 
that are identical by origin are necessarily identical by state  and descent. Two 
alleles that  are identical by descent may not be identical by state because of 
mutation. Figure 1.3 gives a simple example of three nucleotides in alleles 
obtained from  two individuals in generation n and  traced back to their ancestor 
allele  in generation n - 2. The two  alleles are identical by descent because they 
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n -a&- -aag- 

Figure 1.3: Two alleles  in  generation n that me iden- 
tical by  descent but differ  in state. 

are  both copies of the same  ancestor allele in the recent past. However, they  are 
different by state because a mutation from c to g appeared in the right-hand 
allele. 

‘Diploid individuals are said to be heterozygous at a locus if the two alleles 
at that locus are different  by state. They are homozygous if their two  alleles 
are identical by state.  The use of homozygous or heterozygous i s  always in the 
context of the  states under study. If we are  studying  proteins, we may call an 
individual homozygous at a locus when the protein sequences of the two alleles 
are identical, even if their DNA sequences are different. 

Originally, alleles referred to different states of a gene. Our definition differs 
from this  traditional usage in that alleles exist even if there is no genetic variation 
at a locus. Difference by origin has not been used before. It is introduced here 
to  be able to use phrases like “a sample of n different alleles” without implying 
that  the alleles are different  by state. 

Kreitman’s sample contains 11 alleles that differ  by origin. How many alleles 
differ  by state? If we were interested in the full DNA sequence, then  the sample 
contains six alleles that  are different by state. If we were interested in proteins, 
then  the sample contains only two alleles that differ  by state. Of the two protein 
alleles, the one with a lysine at position 192  makes up  6/11 = 0.55 of the alleles. 
The usual way to say this is that  the allele frequency of the lysine-containing 
allele in the sample is 0.55. The sample allele frequency is an estimate of the 
population allele  frequency. It’s not a particularly precise estimate because of 
the small sample size. A rough approximation to  the 95 percent confidence 
interval for a proportion is 

where 5 is the estimate of the proportion, 0.55 in our case, and n is the sample 
size. Thus,  the probability that  the population allele frequency falls within the 
interval (0.26, 0.84) is 0.95. If a more precise estimate is needed, the sample size 
would  have to be increased. 
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1.3 Genotype and allele frequencies 

Population genetics is very quantitative. A description of the genetic structure 
of a population is  seldom simply a list of genotypes, but  rather uses relative 
frequencies of alleles and genotypes. With quantification comes a certain degree 
of abstraction. For example, to introduce the notion of genotype and allele fre- 
quencies we will not refer to a particular  sample, like Kreitman's ADH sample, 
but  rather to a locus that we  will simply call the A locus. (No harm will  come in 
imagining the A locus to be the ADH locus.) Initially, we  will assume that  the 
locus has two alleles, called A 1  and A 2 ,  segregating in the  population.  (These 
could be the two protein alleles at  the ADH locus.) By implication, these two 
alleles are different by state.  There will be three genotypes in the  population: 
two  homozygous genotypes, A 1   A 1  and A 2 A 2 ,  and one heterozygous genotype, 
A 1 A 2 ,  The relative frequency of a genotype will be .written zij, as illustrated 
in the following table. 

Genotype: AI AI A 1 A 2  A 2 A 2  
Relative frequency: 2 1 1  2 1 2  2 2 2  

As the relative frequencies must add to one, we have 

211 + 2 1 2  + 2 2 2  = 1. 

The ordering of the subscripts for heterozygotes is arbitrary. We could have used 
2 2 1  instead of 2 1 2 .  However, it is not permissible to use both.  In  this  book, we 
will always use the convention of making the left index the numerically smaller 
one. 

Allele frequencies play as important a role in population genetics as do geno- 
type frequencies. The frequency of the A 1  allele in the population is 

1 
p = 2 1 1  + "512 ,  2 (1.1) 

and the frequency of the A 2  allele is 

1 
2 

q = 1 - p  = 2 2 2  + - 2 1 2 .  

We can  think of the allele frequency, p ,  in two different ways. One is simply 
as  the relative frequency of A 1  alleles among all of the A alleles in the popu- 
lation. The other is as the probability that an allele  picked at random from 
the  population is an A 1  allele. The  act of picking an allele at random may be 
broken down into a sequence of two actions: picking a genotype at random from 
the population and  then picking an allele at random from the chosen genotype. 
Because there  are  three genotypes, we could write p as 

1 
p = (211  x 1) + ( 2 1 2  x 5 )  + (222  x 0).  

This  representation shows that  there  are  three mutually exclusive ways in which 
we might obtain  an A 1  allele and gives 'the probability of each. For example, the 
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first term in the sum is the joint event that an AlAl is  chosen (this occurs with 
probability xll)  and  that an A 1  allele  is subsequently chosen from the AlAl 
individual (this occurs with probability one). It is  difficult to underestimate 
the importance of probabilistic reasoning when doing population genetics. I 

’ urge the reader to think carefully about the probabilistic definition of p until it 
becomes  second nature. 

Most loci have more than two alleles, In such cases, the frequency of the 
ith allele  will be called p i .  As before, the frequency of the AdAj genotype will 
be called xij. For heterozygotes, i # j and, by convention, i < j. As with the 
two-allele case, the sum of all of the genotype frequencies must  add to one. For 
example, if there  are n alleles, then 

1 = $11 + 2 2 2  + ’ m f Znn + 2 1 2  + $13 + ’ ’  + X(n- l )n  
n n  

i=1 jzi 

The frequency of the  ith allele  is 

Again, this allele frequency has both a relative frequency and a probabilistic 
interpretation. 

Problem 1.1 How many different genotypes are there at  a locus with n alleles 
that differ by state? You already know that there is one genotype at  a locus with 
one dlele  and three genotypes at  a locus with  two alleles. Continue this with 
three, four, and more alleles until you divine the general case. (The answers to 
select problems, including this one, are found a t  the  end of each chapter.) 

In the mid-19605, population geneticists began to use electrophoresis to de- 
scribe genetic variation in proteins. For the first time,  the genetic variation at 
a “typical” locus  could be ascertained. Harry Harris’s 1966 paper, “Enzyme 
polymorphism in man,” was among the first of many electrophoretic survey pa- 
pers. In it, he summarized the electrophoretic variation at 10 loci sampled from 
the English population. The protein produced by one of these loci  is placen- 
tal alkaline phosphatase. Harris found three phosphatase alleles that differed 
by state (migration speed) and called them S (slow), I (intermediate), and F 
(fast) for their rate of movement  in the electrophoresis apparatus.  The genotype 
frequencies are given in Table 1.2. 

The frequency of heterozygotes at the placental alkaline phosphatase locus 
is 158/332 = 0.48, which  is unusually high  for human protein loci. The average 
probability that  an individual is heterozygote at a locus examined in this  paper 
is approximately 0.05. If this could be extrapolated to  the entire genome, then 
a typical individual would be heterozygous at 1 (at least) of every 20 loci. How- 
ever, there is  evidence that  the enzymes  used  in Harris’s study  are not “typical” 
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Genotype Number Frequency  Expected 
ss 141 0.4247  0.4096 
SF 111 0.3343  0.3507 
FF 28 0.0843 0.0751 
SI 32 0.0964 0.1101 
F1 15 0.0452 0.0471 
I1 5 0.0151 0.0074 
Total 332 1.0000 1.0000 

Table 1.2: The frequencies of alkaline  phosphatase  genotypes  in  a  sample  from the 
English  people.  The  expected  Hardy-Weinberg  frequencies are given  in the fourth 
column. The data are from  Harris (1966). 

loci. They  appear to be  more variable than  other protein loci.  At present, we 
do  not have a reliable estimate of the  distribution of protein heterozygosities 
across loci  for any species. 

Problem 1.2 Calculate  the  frequency of the  three alkaline phosphatase  dleles 
in the  English  population. 

1.4 Randomly mating populations 

The first milestone in theoretical  population genetics, the celebrated Hardy- 
Weinberg law, was the discovery of a simple relationship between allele frequen- 
cies and genotype frequencies at an autosomal locus in an equilibrium randomly 
mating  population. That such  a relationship might exist is suggested by the 
pattern of genotype frequencies in Table 1.2. For example, the S allele is more 
frequent than  the F allele and  the SS homozygote is more frequent than  the FF 
homozygote,  suggesting that homozygotes of more frequent alleles  will be  more 
common than homozygotes of less frequent alleles.  Such qualitative observa- 
tions yield quite  naturally  to  the desire for quantitative relationships between 
allele and  genotype frequencies, as provided by the insights of George  Hardy 
and  Wilhelm  Weinberg. 

The Hardy-Weinberg law describes the equilibrium state of a single locus in 
a  randomly  mating diploid population that is  free of other  evolutionary forces, 
such as  mutation,  migration,  and  genetic  drift. By random  mating, we mean 
that  mates  are chosen with  complete  ignorance of their  genotype (at  the locus 
under  consideration),  degree of relationship, or geographic locality. For example, 
a  population in which individuals prefer to  mate with cousins is not  a  randomly 
mating  population.  Rather,  it is an inbreeding  population. A population in ' 

which AI A1 individuals prefer to mate with  other AI A1 individuals is not a 
randomly  mating  population  either. Rather,  this  population is experiencing 
assortative  mating.  Geography  can also prevent  random  mating if individuals 
are more likely to  mate with  neighbors than with  mates chosen at  random  from 
the  entire species. Inbreeding and  population subdivision will be  examined in 
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Chapter 4. Assortative  mating will not  be discussed further because it is a 
specialized topic,  although one that can play an  important role in the evolution 
of some species. 

The Hardy-Weinberg law  is particularly easy to understand in hermaphro- 
ditic species (species in which each individual is both male and  female). The 
autosomal loci of hermaphrodites reach their Hardy-Weinberg equilibrium in 
a single generation of random  mating, no matter how far  the initial genotype 
frequencies are from their equilibrium values. Our task,  then, is to study  the 
change in genotype frequencies in hermaphrodites  brought about by random 
mating at an  autosomal locus with two alleles, A1 and A2, and  genotype fre- 
quencies 5 1 1 ,  2 1 2 ,  and 5 2 2 .  

To form a zygote in the offspring generation,  the  assumption of random  mat- 
ing requires that we choose  two gametes at random from the parent  generation. 
The probability that the zygote is an AlAl homozygote is the product of the 
probability that  the egg is A I ,   p ,  times the probability that  the sperm is A I ,  
also p .  (The  fact that these two probabilities are  the same is the consequence of 
assuming that the species is hermaphroditic.)  Thus, the probability that a ran- 
domly formed zygote is A1 AI is just p 2  by the product rule of probabilities for 
independent events. Similarly, the probability that a randomly formed zygote 
is AzA2 is q2. An AlA2 heterozygote may be formed in two different ways. One 
way is with an A1 egg and an A2 sperm. The probability of this combination is 
pq. The  other way is with an A2 egg and  an A1 sperm.  The probability of this 
combination is also pq. Thus,  the  total probability of forming a heterozygote is 
2pq by the addition rule of probabilities for mutually exclusive events. 

After one round of random mating,  the frequencies of the  three genotypes 
are 

Genotype: AI AI &A2 A2A2 
Frequency (H-W): p2 2pq q2 

These are  the Hardy-Weinberg genotype frequencies. As advertised,  they de- 
pend only on the allele frequencies: If you  know p ,  then you  know the frequencies 
of all three genotypes. 

The  important things to note  about  the evolutionary change brought  about 
by random  mating in diploid hermaphroditic  populations  are: 

0 The frequencies of the alleles do not change M a result of random  mating, 
as may be seen by using Equation 1.1 with the Hardy-Weinberg frequen- 
cies. Random mating can change genotype frequencies, not allele frequen- 
cies. Consequently, the Hardy-Weinberg genotype frequencies will remain 
unchanged in all generations after the first. 

0 The Hardy-Weinberg equilibrium is attained in only one round of ran- 
dom mating.  This is traceable , to our assumption that  the species is 
hermaphroditic (and that we are  studying  an  autosomal  locus).  In a 
species with separate sexes, it takes two generations to achieve Hardy- 
Weinberg equilibrium, as we  will soon discover. 
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0 To calculate the genotype frequencies after a round of random  mating, we 
need only the allele frequencies before random  mating,  not  the  genotype 
frequencies. 

Of course, many species are  not  hermaphrodites  but  are dioecious; each in- 
dividual is either  male or female. To further  complicate matters,  the  genotype 
frequencies could be different in the two sexes. As an  extreme example,  sup- 
pose that all of the females are A1 A1 and all of the males are AzAz. If the 
sexes are equally frequent,  the frequency of the A1 allele in the  population is 
p = 1/2. After one  round of random  mating,  the frequencies of the A1 A1 and 
A2Az homozygotes are zero, and  the frequency of the AlA2 heterozygote is one. 
These frequencies are far from the Hardy-Weinberg frequencies. However, the 
third  generation, produced by random  mating of heterozygotes, has genotypes 
A I A I ,  A1A2, and AzAz in the Hardy-Weinberg frequencies 1/4,  1/2, and 1/4, 
respectively. Thus, for dioecious species with  unequal  genotype frequencies in 
the two sexes, it  can  take two generations to  reach equilibrium. 

Can  it  take more  or fewer? The answer depends  on  whether  the  locus is on  an 
autosome or a  sex chromosome. For now, consider only the case of an  autosomal 
locus, for which one  round of random  mating makes the allele frequencies the 
same  in both sexes and equal to  the average of the frequencies in the males and 
females of the parent or first  generation. Call the frequency of the A1 allele in 
the first and second generations p .  

In the next  generation (the  third),  the probability that a zygote is AlAl 

is the  product of the probabilities that  the sperm is AI,  p ,  and  that  the egg 
is A l ,  also p .  These two probabilities  became  equal in the second generation. 
n o m  here on,  the  argument parallels that used for hermaphrodites  with the 
same  ultimate  genotype frequencies. Thus, if the' allele frequencies are different 
in the two sexes, it  takes two generations to  reach Hardy-Weinberg frequencies. 
Otherwise, it  takes only one generation. 

Problem 1.3 Hardy-Weinberg frequencies in dioecious species may be  investi- 
gated in an entirely different way. Let  the  genotype frequencies in  females  be 
5 1 1 ,  2 1 2 ,  and 2 2 2 ,  and in males, yll ,  y12, and y22. Enumerate all nine  possible 
matings (A1 A1 female by A1 A1 male, A1 A1 female by AlA2 male, etc.) and 
calculate the frequencies of genotypes  produced by each one as a function of the 
x 'S and y 'S. Sum  these frequencies, weighted by the frequencies of the  matings, 
to  obtain  the  genotype frequencies in  the second  generation. Now let  these geno- 
types mate  at random  to  produce  the  third  generation.  If all goes well, a morass 
of symbols will collapse into  the satisfying  simplicity of the Hardy-Weinberg  law. 
Be  forewarned, you will need  several  sheets of paper. 

Problem 1.4 Graph  the frequencies of homozygotes and heterozygotes as a 
function of the allele frequency, p .  At  what allele frequency is  the  frequency 
of heterozygotes  maximized? 

One of the most important consequences of the Hardy-Weinberg law concerns 
the genotypes occupied by rare alleles. Suppose the Az allele is rare;  that is, 
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q = 1 - p is small. Are Az alleles more likely to  be in AzAz homozygotes or 
AlAz heterozygotes? The  ratio of the  latter  to  the former is 

- = -  2Pq  2P 2 
% -. 

cl2 9 Q 

The approximation used  in the  last  step makes use of the assumption that q 
is ,small. As p = 1 - g, p may be  approximated by one because q is small 
relative to one. For example, if q is about 0.01, the  error in this  approximation 
is about 1 percent, which is perfectly acceptable for population genetics. If 
q = 0.01, an Az allele is about 200 times more likely to be in a heterozygote 
than in a homozygote. If q = 0.001, it is about 2000 times more likely to be in 
a heterozygote. Thus,  rare alleles mostly find themselves in heterozygotes, and, 
as a consequence, their fate is tied to their dominance relationship  with the A1 
allele. This is our first clue that dominance is an  important factor in evolution. 

Problem 1.5 Graph the ratio of the frequencies of A1 Az heterozygotes to AzAz 
homozygotes as a  function of q using both  the exact and the approximate for- 
mulae. 

The generalization of the Hardy-Weinberg law to multiple alleles requires no 
new ideas. Let the frequency of the IC alleles, Ai,  i = 1..  , IC,  be pa, i = 1..  .IC. 
Using the same  argument as before, it should be clear that  the frequency of the 
AiAi homozygote after  random  mating will be p: and the frequency of the AiAj 
heterozygote will be 2pipj. The  total frequency of homozygotes is  given by 

G = E P : .  
i=l 

G is called the homozygosity of the locus. The heterozygosity of the locus is 
given by 

i d  

For randomly mating diploid' populations, the heterozygosity equals the fre- 
quency of heterozygotes. Note, however, that  the definition of heterozygosity 
uses only allele frequencies, not genotype frequencies. Because of this,  het- 
erozygosity is often used to describe levels of variation in populations that  do 
not conform to  the Hardy-Weinberg assumption of random  mating. It is even 
used to describe variation in bacterial  populations, which are haploids. 

The frequencies of the S, F, and I alleles of placental alkaline phosphatase 
as obtained from Table 1.2 are 0.640, 0.274, and 0.086, respectively. From these 
we can calculate the expected frequencies of each genotype in the population 
assuming that it is in Hardy-Weinberg equilibrium. The expected frequency 
of SS homozygotes, for example, is  0.642 = 0.4095. The  fourth column in 
Table 1.2 gives the expected frequencies for the remainder of the genotypes. 
The agreement between the observed and expected numbers is quite good. A 
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Place S F I Others  n 
England ,637  ,270  .085  .008  597 
Italy ,661  ,256  .075  ,007  273 
West India .701  .217  .066  .016  208 
Thailand .746  ,081  .l65  .008  188 
Japan -724  -038  .236 , .003  294 
Nigeria .g42  ,019  .039  130 
Canadian Inuits ,556  ,142  .296  ,006  81 
Papua New Guinea ,880  .050  .068 ,002 338 

Table 1.3: Geographic  variation  in the  three alleles of placental alkaline phosphatase 
in humans.  The  “Others” category is the  total frequency of alleles other  than  the  three 
common alleles. The final column is the  sample size. The  data  are from Roychoudhury 
and Nei (1988). 

x 2  test does not allow rejection of the Hardy-Weinberg hypothesis at the 5 
percent level. The human placental alkaline phosphatase story is typical of 
many proteins examined from populations that  are thought to  mate at random. 
Very  few cases of significant departures from  Hardy-Weinberg expectations have 
been recorded in outbreeding species. 

Problem 1.6 Derive the Hardy-Weinberg law for a sex-linked locus. Let the 
initial frequency of A1 in females  be p f  and in males, p m .  Follow the two allele 
frequencies in successive generations until you understand  the allele-frequency 
dynamics. Then, jump ahead and find the equilibrium genotype frequencies 
in females and males. Finally, graph  the male and female allele frequencies 
over several generations for a population that is started with all AlAl females 
(p, = 1) and A2 males (pm = 0). 

A description of the genetic structure of a population must include a geo- 
graphic component if the  ultimate goal  is to understand the evolutionary forces 
responsible for genetic variation. A conjecture about  the evolutionary history 
of the alkaline phosphatase alleles,  for example, will be of one sort if the allele 
frequencies are the same in all subpopulations and of quite  another  sort if the 
subpopulations vary in their allele frequencies. Some representative frequencies 
taken from the 1988 compilation of human polymorphism data by Arun Roy- 
choudhury and Masatoshi Nei are given in Table 1.3. As is apparent,  there is 
considerable geographic variation in the frequencies of the  three alleles. We must 
conclude what will be obvious to most: The human population is not one large, 
randomly mating population. The agreement of the genotype frequencies with 
Hardy-Weinberg expectations within the English population, however, suggests 
that local groupings have historically approximated randomly mating popula- 
tions. Most other species  show a similar pattern. Some  have  less differentiation 
between geographic areas,  others  quite a bit more. But most show  some  dif- 
ferentiation,  and  this fact should be incorporated into our view  of the genetic 
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Figure 1.4: Estimates of average protein  heterozygosities  based on  electrophoretic 
studies  plotted from the  data in Nevo et al. (1984). 

structure of populations. We return to  the analysis of data from subdivided 
populations in Section 4.4. 

A great deal of work has been done to estimate the levels of genetic variation 
in natural populations. For electrophoretically detectable  protein  variation, 
average heterozygosities (averaged across loci)  vary from zero to about 0.15. The 
average protein heterozygosity in humans is about 0.05; for D. medanogaster it 
is about 0.12. Figure 1.4  shows that average heterozygosities vary only by about 
3.5-fold  over a taxonomically diverse group of animals. Average heterozygosities 
are somewhat misleading because they  bury the fact that  there is a tremendous 
amount of variation between  loci in levels of polymorphism. For example, soluble 
enzymes are much  more polymorphic than are  abundant nonenzymatic proteins. 
Nonetheless, average heterozygosities do  give the correct impression that there 
is a lot of genetic variation in natural populations. 

Why  does the Hardy-Weinberg law play such a central'role in population 
genetics? Consider that life first appeared on Earth  about four billion years 
ago.  For the next two  billion or so years, the  earth was populated by haploid 
prokaryotes, not diploid eukaryotes. During this  time, most of the basic elements 
of living systems appeared: the genetic co.de, enzymes, biochemical pathways, 
photosynthesis, bipolar membranes, structural  proteins,  and on and on.  Thus, 
the most fundamental innovations evolved  in populations where the Hardy- 
Weinberg  law  is irrelevant! If population genetics were primarily concerned 
with the genetic basis of evolution, then  it is odd that  the Hardy-Weinberg law 
is introduced so early in most texts (including this one). One might expect to 
find a development targeted at those important first two  billion years with a 
coda to handle the diploid upstarts. 

Like so much of science, the development of population genetics is anthro- 
centric. Our most consuming interest is with ourselves. In  fact,  the Weinberg of 
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Hardy-Weinberg was a human geneticist struggling with the  study of inheritance 
in a species in which setting up informative crosses  is  frowned upon. Drosophila 
ranks a close  second to Homo in the eyes of geneticists. Both humans and fruit 
flies exhibit genetic variation in natural  populations,  and  this variation demands 
an evolutionary investigation. Population genetics and  its  Great Obsession  grew 
out of this fascination with variation in species we love, not  out of a desire to 
explain the origin of major evolutionary novelties. 

1.5 Answers to problems 

1.1 When there  are n alleles, there  are n homozygous genotypes, AiAi, i  = 
1 . . . n. If we first view an AiAj heterozygote as  distinct from an AjAi 
heterozygote, there  are n(n - 1) such heterozygotes. The  actual number 
of heterozygotes will  be  one-half this  number, or n(n - 1)/2. Thus,  the 
total number of genotypes is n + n(n - 1)/2 = n(n + 1)/2. 

1.3 The matings  and the frequency of genotypes from each mating may be 
summarized in a table with nine rows, the first three of which are given. 

Using the complete table,  the frequency of A1  A1 offspring  is 

where p f  and p m  are the frequencies of AI in females and males in the 
original population. Similarly, the frequency of AlAz is p f q m  + q f p ,  and 
that of AZAZ is qfqm.  As the A locus  is autosomal and segregates inde- 
pendent of the sex chromosomes, the frequencies of the  three genotypes 
will be the same in  both males and females. The frequency of the A1 allele 
in the offspring  is thus 

P = p f p m  + (Pfqm + q f P m ) / 2  = @ f  + Pm)/2, 

which  is also the same in both males and females. When these offspring 
mate among themselves to produce the  third generation, the above cal- 
culations may be used again,  but  this  time with p f  = pm = p .  Thus, 
the frequency of AlAl in the  third generation is p f p ,  = p 2 ,  which is 
the Hardy-Weinberg frequency. The  other two genotype frequencies are 
obtained in a similar way. 
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1.6 As males get their X-chromosomes  from their  mothers, the frequency of 
A1 in  males  is  always equal to  the frequency in females in the previous 
generation. As a female gets one X from her mother and one from her 
father,  the allele frequency in females is always the average of the male and 
female frequencies in the previous generation. Thus,  the allele frequencies 
over the first three generations are  as follows. 

Generation Females  Males  Female - male 
1 Pf  Pm P f  - Pm 
2 ( P f  + Pm) /2  P f  -h - P m ) P  
3 bf + bf +Pm)/21/2 bf + Pm) /2  bf - P m ) / 4  

Two important  things emerge from this  table.  First, the overall allele 
frequency, 

does not change over time. (Convince yourself that this is so by calculat- 
ing p in generations 2 and 3.) Second, the difference between the allele 
frequencies in females and males is halved each generation, as recorded in 
the table. Taken together, these two observations show that eventually the 
allele frequencies in males and females  will  converge to p .  At that time, 
the genotype frequencies in females  will be Hardy-Weinberg frequencies. 



Chapter 2 

Genetic Drift 

The discussion of random  mating  and the Hardy-Weinberg law in the previ- 
ous chapter was premised on the  population size being infinite. Sometimes real 
populations are very large (roughly log for our own species), in which case the 
infinite assumption might seem reasonable, at least as a first approximation. 
However, the population sizes of many species are not very large. Bird watchers 
will tell you, for example, that there  are fewer than 100 Bachman’s warblers in 
the cypress swamps of South  Carolina. For these warblers, the infinite popu- 
lation size assumption of the Hardy-Weinberg law may be  hard to  accept. In 
finite populations, random changes in allele frequencies result from variation in 
the number of offspring between individuals and, if the species is diploid and 
sexual, from Mendel’s  law of segregation. 

Genetic drift,  the name given to these  random changes, affects evolution in 
two important ways. One is as  a dispersive force that removes genetic vari- 
ation from populations. The  rate of removal is inversely proportional to  the 
population size, so genetic drift is a very weak dispersive force in most natural 
populations. The other is drift’s effect on the probability of survival of new mu- 
tations,  an effect that is important even  in the largest of populations.  In  fact, we 
will see that  the survival probability of beneficial mutations is (approximately) 
independent of the population size. 

The dispersive aspect of genetic drift is countered by mutation, which puts 
variation back into  populations. We will  show  how these two forces reach an 
equilibrium and how they can account for much of the molecular variation de- 
scribed in the previous chapter. 

The  neutral theory states  that much of molecular variation is due to  the 
interaction of drift and  mutation.  This theory, one of the  great accomplishments 
of population genetics because it is the first fully  developed theory to satisfy 
the  Great Obsession, has remained controversial partly because it  has been 
difficult to  test  and  partly because of its seemingly outrageous claim that most 
of evolution is due to genetic drift rather  than  natural selection, as Darwin 
imagined. The theory will be developed in this  chapter  and will reappear in 
several later  chapters as we master  additional topics relevant to  the theory. 

19 
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2.1 A computer simulation 

Simple computer'simulations,  as shown  in Figure 2.1, may be used to illustrate 
the consequences of genetic drift. These particular simulations model a popula- 
tion of N = 20 diploid individuals with two segregating alleles, A1 and Az. The 
frequency of A1 at  the  start of each simulation is p = 0.2,  which represents 8 
AI alleles and 32 A2 alleles. Each new generation is obtained from the previous 
generation by repeating the following three  steps 2N = 40 times. 

1. Choose an allele at random from among the  2N alleles in the parent 
generation. 

2. Make an exact copy of the allele. 

3. Place the copy in the new generation. 

After 40 cycles through the algorithm, a new population is created with an allele 
frequency that will, in general, be different  from that of the original population. 
The reason for the difference  is the randomness introduced in step 1. 

As written, these steps may be simulated on a computer or with a bag of 
marbles of two colors, initially 8 of one color and 32  of another (providing that 
you have all of your marbles).  The results of  five independent simulations are 
illustrated in Figure 2.1. Obviously,  allele frequencies do change at random. 
Nothing could  be farther from the constancy promised by Hardy-Weinberg. 

In natural populations, there  are two main sources of randomness. One is 
Mendel's  law of segregation. When a  parent produces a gamete, each of its 
two  homologous  alleles is equally likely to appear in the gamete. The second 
is demographic stochasticity.* Different individuals have different numbers of 
offspring  for  complex reasons that collectively appear to be random. Neither of 
these sources gives any preference to particular alleles. Each of the  2N alleles 
in the parent generation has  an equal chance of having a copy appear in the 
offspring generation. 

Problem 2.1 What is the  probability that  apaxticular allele gets a copy into  the 
next  generation? The probability is one minus the  probability that  it doesn't 
make it. The  surprising answer quickly  becomes independent of the  population 
size as N increases. (Use limm+m(l - l /m)m = e-l to remove the dependence 
on population size.) 

You may have noticed that  the computer simulations do not explicitly in- 
corporate either segregation or demographic stochasticity, even though these 
two sources of randomness are  the causes of genetic drift. Nonetheless, they 
do represent genetic drift as conceived  by most population geneticists. A more 
realistic simulation with both sources of randomness would behave almost ex- 
actly like our simple one. Why then, do we  use the simpler simulation? The 
answer is a recurring one in population genetics: The simpler model is easier to 

*Stochastic is a synonym for random. 
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Figure 2.1: A computer simulation of genetic drift. The frequency  of the A1 allele, p ,  
is  graphed for 100 generations  in  five  replicate populations each of size N = 20 and 
with initial  allele  frequency p = 0.2. 

understand, is easier to analyze mathematically, and  captures  the essence of the 
biological situation.  With  drift,  the essence  is that each allele in the  parental 
generation is equally likely to appear in the offspring generation.  In  addition, 
the probability that a  particular allele appears in the offspring generation is 
nearly independent of the identities of other alleles in the offspring generation. 
The simple algorithm in the simulation does have both of these  properties  and 
simulates what is called the Wright-Fisher model in honor of Sewall Wright and 
R. A. Fisher, two pioneers of population genetics who  were among the first to 
investigate genetic drift. 

Important  features of genetic drift are illustrated in Figure 2.1. One, of 
course, is that genetic drift causes random changes in allele frequencies. Each of 
the five populations behaves differently even though  they all have the same ini- 
tial allele frequency and  the'same population size. By implication, evolution can 
never be repeated. A second feature is that alleles are lost from the population. 
In two cases, the A1 allele was lost; in two other cases, the A2 allele was lost. 
In  the fifth case, both alleles are still in the population  after 100 generations. 
From this we might reasonably conclude that genetic drift removes genetic vari- 
ation from populations. The  third feature is more subtle: the direction of the 
random changes is neutral.  There is no'systematic tendency for the frequency 
of alleles to move up or down. A few simulations cannot  establish  this  feature 
with certainty. That must wait for our  mathematical development, beginning 
in the next section. 

Problem 2.2 If you  know how to program a computer, write a simulation of 
genetic drift. 
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‘1 

Figure 2.2: Genotype frequencies for  four generations of  drift with N = 1. 

2.2 The decay of heterozygosity 

As a warm-up to our general treatment of genetic drift, we  will first examine 
the simplest non-trivial example of genetic drift:  a  population  made up of a 
single hermaphroditic individual. If the individual is an AlA2 heterozygote, the 
frequency of the A1 allele in the population is one-half. When the population 
reproduces by mating at random (a strange  notion,  but  accurate)  and the size of 
the population is kept constant at one, the heterozygote is replaced by an A1 AI, 
A1A2, or AzAz individual with probabilities 1/4,  1/2, and 1/4, respectively. 
These probabilities are the probabilities that  the allele frequency becomes 1, 
1/2, or 0 after a single round of random mating.  In the first or third outcome, 
the population is a single homozygote individual and will remain homozygous 
forever. In  the second outcome, the composition of the population remains 
unchanged. 

After another round of random  mating, the probability that  the population is 
a heterozygous individual is 1/4, which  is the probability that  it is heterozygous 
in the second generation, 1/2, times the probability that  it is heterozygous in 
the  third generation given that  it is heterozygous in the second generation, 1/2. 
The probabilities for the first four generations are  illustrated in Figure 2.2. It 
should be clear from the figure that  the probability that  the population is a 
heterozygote after t generations of random  mating is (1/2)t, which approaches 
zero as t increases. On average, it takes only  two generations for the population 
to become  homozygous. When it does, it is M likely to be homozygous for the 
A1 allele as for the A2 allele. 

While simple, this example suggests the following features  about genetic 
drift, some of which overlap our observations on Figure 2.1. 

0 Genetic drift is a random process. The outcome of genetic drift cannot 
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be stated with certainty. Rather, either probabilities must be assigned to 
different outcomes or the average outcome must be described. 

Genetic drift removes genetic variation from the population. The prob- 
ability that an individual chosen at random from the  population is het- 
erozygous after t generations of random  mating is 

t 
?it = ?io (1 - &) , 

where 3 t 0  is the initial probability of being a heterozygote (one in'our ex- 
ample) and N is the population size (one in our example). This provoca- 
tive form  for our simple observation that ?it = (1/2)t adumbrates the 
main result of this section. 

The probability that  the ultimate frequency of the A1 allele  is one is equal 
to  the frequency of the A1 allele  in the  starting  population, one-half. 

Problem 2.3 Convince  yourself that  the average time for the  population to 
become  homozygous is, in  fact, two generations. 

The  mathematical description of genetic drift can be quite complicated for 
populations with more than one individual. Fortunately, there is a simple and 
elegant way to study one of the most important aspects of genetic drift: the  rate 
of decay of heterozygosity. As usual, we  will be studying  an autosomal locus in a 
randomly mating population made up of N diploid hermaphroditic individuals. 
The state of the population will be described by the variable G,  defined to be the 
probability that two  alleles  different by origin  (equivalently, drawn at random 
from the population without replacement) are identical by state. These alleles 
are assumed to be completely equivalent in function and,  thus, equally fit in 
the eyes of natural selection. Such  alleles are called neutral alleles. 0 is a 
measure of the genetic variation in the population, which  is almost the same as 
the homozygosity of the population as defined in Equation 1.2. When there is 
no genetic variation, G = 1. When  every  allele  is  different by state from every 
other allele, G = 0. 

The value of G after one round of random mating, G', as a function of its 
current value, is 

1 
2 N  G' = - + (1 - a) 8. 

The derivation, illustrated in Figure 2.3, goes as follows. G' is the probabil- 
ity that two  alleles that  are different by origin in the next generation, called 
generation t + 1 in Figure 2.3, are identical by state. Identity by state could 
happen in  two  different  ways. One way is  when the two  alleles are copies of 
the same allele in the previous generation, as illustrated by the left-hand side 
of Figure 2.3. The probability that  the two  alleles do share  an ancestor allele 
in the previous generat,ion is 1/(2N). (Pick one allele, and  the probability that 
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Probability = & Probability = 1 - & 
Figure 2.3: The  derivation of B’. The circles  represent  alleles; the arrows  indicate the. 
ancestry of the alleles. 

the allele  picked next has the same parent allele as  the first is 1/(2N),  as all 
alleles are equally likely to be chosen.) The second way  for the alleles to be 
identical by state is  when the two  alleles  do not have the same ancestor allele in 
the previous generation, as illustrated by the right-hand side of Figure 2.3, but 
their two ancestor alleles are themselves identical by state. This  ancestry occurs 
with probability 1 - 1/(2N), and  the probability that  the two ancestor alleles 
are identical by state is Q (by definition). As these two events are independent, 
the probability of the second way  is [l - 1/(2N)]Q. Finally, as the two  ways to 
be identical by state  are mutually exclusive, the full probability of identity by 
state in the next generation is obtained by summation, as seen in the right-hand 
side of Equation 2.1. 

The time course for Q is most easily studied by using 

3t=1-9, 

the probability that two randomly drawn alleles are different  by state. (3t is 
similar to the heterozygosity of the population.) From Equation 2.1 and a few 
algebraic manipulations, we have 

and finally, 

The A operator is  used to  indicate the change in a state variable that occurs 
in a single generation, A ~ 3 t  = W - X. The subscript N in A ~ 3 t  is simply a 
reminder that  the change is due to genetic drift. 

Equation 2.2 shows that  the probability that two  alleles are different by 
state decreases at a rate 1/(2N) each generation. For  very large populations, 
this decrease will be very  slow. Nonetheless, the eventual result is that, all of 
the variation is driven from the population by genetic drift. 

The full time course for 3t is 
t 

3 t i = 3 t 0  1” ( ’2N) ’ 
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where ?lt is 1-1 in the  tth generation. The easiest way to show this is to examine 
the first few generations, 

= 1-10 ( 1" Z?N)2 , 

and  then make a modest inductive leap to  the final result. 
Equation 2.3 shows that  the decay of 1-1 is geometric. The probability that 

two  alleles are different by state goes steadily down but does not  hit zero in a 
finite number of generations. Nonetheless, the probability eventually becomes 
so small that most populations will,  in fact,  be homozygous. Every allele will 
be a descendent of a single  allele in the founding population.  .All  but one of the 
possibly thousands  or millions of alleles  in any particular  population will fail to 
leave any descendents. 

Problem 2.4 Graph 1-1t and Gt for 100 generations using N = 1, N = 10, 
N = 100, and N = 1,000,000. 

'For large populations, genetic drift is a very  weak evolutionary force, as may 
be shown by the number of generations required to reduce 1-1 by one-half. This 
number is the value oft   that  satisfies the  equation 1-1t = 1-10/2, 

t 

"1-10 1" " 2 ( ;N) ' 

Cancel go from both sides, take  the  natural logarithm of both sides, and solve 
for t to obtain 

- In(2) 
tl/2 = ln(1-  1/2N)' 

The approximation of the log given in Equation A.3, 

ln(1 + x) W x, 

allows us to write 

tl12 FY 2N ln(2). (2.5) 

In words, the time required for genetic drift to reduce 1-1 by one-half is propor- 
tional to  the population size. 

When studying  population genetics, placing results in a more general context 
is often enlightening. For example, a population of one million individuals 
requires about 1.38 x los generations to reduce 31 by one-half. If the generation 
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time of the species  were 20 years, it would take  about 28 million years to halve 
the genetic variation. In geologic terms, 28 million years ago Earth was in the 
Oligocene epoch, the Alps and the Himalayas were rising from the collision  of 
India  and  Eurasia  and large browsing mammals first appeared, along with the 
first monkey-like primates. During the succeeding 28 million years, whales, apes, 
large carnivores, and hominoids all appeared, while genetic drift was poking 
along removing one-half of the genetic variation. 

Problem 2.5 Graph simultaneously both Formula 2.4 and Formula 2.5 as a 
function of N for N from 1 to 100. Is the approximation to your liking? 

Another property of genetic drift that is easy to derive is the probability that 
the A1 allele  will be the sole surviving allele  in the population.  This probability 
is  called the fixation probability. In Figure 2.1 ,  the A1 allele was  fixed in two 
of the four replicate populations in which a fixation occurred. We could  use 
the simulation to guess that  the fixation probability of the A1 allele  is about 
one-half. In  fact,  the fixation probability is 0.2, as will emerge from a few simple 
observations. 

As all variation is ultimately lost, we  know that eventually one allele  will be 
the ancestor of all of the alleles in the population. As there  are 2N alleles in 
the population, the chance that any particular one of them is the ancestor of all 
(once H = 0) is just 1/(2N). If there were,  say, i copies of the A1 allele, then 
the chance that one of the i copies  is the ancestor is i l ( 2 N ) .  Equivalently, if the 
frequency of the A1 allele  is p ,  then the probability that all alleles are  ultimately 
A1 is p .  In  this case, we say that  the A1 allele  is  fixed in the population.  Thus, 
the probability of ultimate fixation of a neutral allele is its  current frequency, 
.(p) = p ,  to introduce  a  notation that will be used later in the book. This is as 
trivial  as it is because all alleles are equivalent; there is no natural selection. 

Notice that our study of 3.1 and the fixation probability agrees very  well with 
the observations made earlier on the population composed of a single individual. 
You should use the simple case  whenever  your intuition for the more complicated 
case needs help. 

Problem 2.6 9 is almost the  same as the homozygosity of the population, G. 
Suppose we were to define the homozygosity of a population as the  probabil- 
ity  that two alleles chosen at  random from the population with replacement 
axe identical by state. Show that this is equivalent to  the definition given  in 
Equation 1.2. Next, show that 

Use this to justify the claim that G and 9 are "almost the  same." It should be 
cleax that we could have used the term heterozygosity everywhere that we used 
3.1 without being seriously misled. 

Genetic drift is an evolutionary force that changes both allele and genotype 
frequencies. No population can escape its influence.  Yet it is a very  weak 
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evolutionary force in large populations, prompting a great deal of debate over its 
relative importance in evolution. Drift is undeniably important for the dynamics 
of rare alleles, in small subdivided populations with very low migration rates, 
and in the neutral  theory of molecular evolution. Beyond these three  arenas, 
there is little agreement about the importance of drift. 

Genetic drift appears to call into question the validity, or at least the utility, 
of the Hardy-Weinberg law.  However, this is not the case except in the smallest 
of populations. The  attainment of Hardy-Weinberg frequencies takes only a gen- 
eration or  two.  Viewed as  an evolutionary force, random mating has a  time scale 
of one  or  two generations. Drift has  a time scale of 2 N  generations, vastly larger 
than one or  two  for natural populations. When two  forces  have such different 
time scales, they rarely interact in an interesting way. This is certainly true for 
the  interaction of drift and random mating. In any particular generation, the 
population will appear to be in Hardy-Weinberg equilibrium. The deviation of 
the frequency of a genotype from the Hardy-Weinberg expectation will be no 
more than about 1/(2N), certainly not a measurable deviation. Moreover, the 
allele frequency will not change  by a measurable amount  in a single generation. 
Thus,  there is ,nothing that  an experimenter could do to tell, based on  allele 
and genotype frequencies, that  the population does not adhere faithfully to  the 
Hardy-Weinberg predictions. 

2.3 Mutation and drift 

If genetic drift removes variation from natural populations, why aren’t all pop- 
ulations devoid of genetic variation? The answer, of course, is that  mutation 
restores the genetic variation that genetic drift eliminates. The  interaction 
between drift and  mutation is particularly important for  molecular population 
genetics and  its  neutral theory. The neutral theory claims that most of the DNA 
pequence  differences  between  alleles within a population or  between species are 
due to neutral  mutations. The mathematical aspects of the theory will be de- 
veloped  in this section. The following section will bring the mathematics  and 
the  data together. 

Mutation introduces variation into the population at a rate  NU, where U is 
the  mutation rate  to neutral alleles. Genetic drift gets rid of variation at a rate 
1/(2N). At equilibrium, the probability that two  alleles  different by origin are 
identical by state is  given by the classic formula 

There are many  ways to obtain Formula 2.6. We  will use a  traditional approach 
that follows directly from Equation 2.1 with the addition of mutation. 

The probability that a  mutation  appears in a gamete at  the locus under 
study is U ,  which  is  called the mutation rate even though  mutation probability 
would  be a more accurate  term. When a mutation does occur, it is assumed 
to be to a unique allele, one that differs  by state from  all  alleles that have  ever 

/.,.,...,.. , . _ .  . ,..... 1(, ~ . . X , ,  .. .... . . .  . . . ,. , . . . ,  
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existed in the population. A population that has been around for a long time 
will have seen a very large number of different alleles. Consequently, our model 
of mutation is often called the infinite-allele model. The infinite-allele model 
is meant to approximate the large,  though finite, number of alleles that  are 
possible at the molecular level. 

Problem 2.7 How many different alleles are one  mutational  step away from an 
allele a t  a locus that is 3000 nucleotides in extent? How many  are two mutational 
steps away? 

The value of G after one round of random  mating  and mutation, as a function 
of its current value, is 

G’ = (1 - [& + (1 - &) G] . 

Notice that  this formula differs from Equation 2.1 only by the factor (1 - u ) ~  
on the right side. This  factor is the probability that a mutation  did  not occur in 
either of the two alleles  chosen at random from the population in the “prime” 
generation.  (The  probability that a mutation  did not occur in one allele is 1 - U ;  

the two alleles are  independent.) 
Equation 2.7 may be  manipulated to obtain  an  approximation for A%. The 

approximation is based on the fact that  mutation  rates  are small (often 
to depending on the context)  and  population sizes are large (often much 
larger than lo4). The approximation is obtained in three  steps. For the first 
two, approximate (1 - u ) ~  with 1 - 2u and ignore terms with u/N as  factors, 

G’ w (1 - 221) [& + (1 - A) G] 

w - +  1” 
2N ( lN) G -  2uG. 

For the  third  step, set R = 1 - G and  rearrange a bit to get 

R ’ w  1” R + 2 u ( l - R )  ( a 
The change in R in a single generation is 

At equilibrium, AN = 0. The value of R that satisfies A% = 0 is 

& =  4Nu 
1 + 4Nu’  

which  gives Equation 2.6 immediately. 
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Problem 2.8 Graph  Equation 2.6 as a function of 4Nu. What value of 4Nu 
gives a  reasonable fit to the average heterozygosity for  proteins as described by 
electrophoretic studies in humans? 

Our route to  the equilibrium value of X was rapid, as befits such a simple 
result. Now,  we must  return to  the derivation to bring out a few features that 
will increase our  understanding of the interaction of evolution forces. Examina- 
tion of Equation 2.8 shows that  the change in X is a sum of two components, 
which may be  written as 

AX W ANX + A,%. 

The left component, 
1 A N X  = -- 2N" 

is the already familiar change in X due to genetic drift. The right component, 

A,% = 2u( l -  X), (2.10) 

is the change in X due to mutation  and may be derived by considering the 
effects of mutation in isolation, that is, in an infinite population. 

In an infinite population with mutation,  the probability that two randomly 
chosen  alleles are different in state in the next generation is 

X' = X + (1 -%)[l  - (1 - 
which  is the sum of the two  ways that  the two  alleles may have come to be 
different. The first way is if their  parent alleles  were different by state, which 
occurs with probability X. The second way is if their  parent alleles  were not 
different and a mutation occurred in the  production of at least one of the two 
alleles. The  mutation  term on the far right is one minus the probability that 
no mutation  occurred, which  is the same as the probability that at least one 
mutation occurred. By approximating (1 - u ) ~  with 1 - 221 and performing some 
minor rearrangements, we recover Equation 2.10  for A,X.  

The change due to drift is always negative (drift decreases genetic variation), 
whereas the change due to mutation is always positive (mutation increases ge- 
netic variation). Equilibrium is reached when these two evolutionary forces 
exactly balance, -AN% = A,X. The equilibrium is interesting only when 4Nu 
is moderate in magnitude. If 4Nu is very small,  then genetic drift  dominates 
mutation  and genetic variation is eliminated from the population. If 4Nu is 
very large,  mutation  dominates  drift  and all 2N alleles  in the population are 
unique in state. 

The comparison of the  strengths of evolutionary forces is key to  an under- 
standing of their  interaction. The  strength of a force may be quantified by the 
time required for the force to have a significant effect on the genetic structure 
of the population.  In the previous section, we saw that  the  time required for 
genetic drift to reduce the heterozygosity of the population by one-half is pro- 
portional to  the population size, N .  We could say that  the time scale of genetic 
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drift is proportional to  the population size. Similarly, the  time scale of mutation 
is proportional to 1/u. If l /u  (< N ,  the  time scale of mutation is  much  less than 
that of drift, leading to a population with many unique alleles. If N << l /u ,  the 
time scale of drift is shorter, leading to a population devoid of variation. 

Problem 2.9 Graph -AN% and A,% as function of 'U for N = lo4 and u = 
5 x Do the lines intersect where you expect  them  to? 

In addition to finding the equilibrium properties of the population, we can 
also derive the  rate of substitution of neutral  mutations. The  rate of substitution 
could just  as well have  been called the  rate of fixation, as  it is a measure of 
how frequently genetic drift and  mutation cause alleles to become  fixed  in the 
population. To calculate the  rate of substitution, we need  only multiply the 
average number of mutations that enter the population each generation by the 
fraction of those mutations that fix. 

The average number of new mutations  entering the population each gener- 
ation is equal to  the number of gametes produced each generation times the 
probability of a mutation in any one of them, 2Nu. Thus, in each generation 
there will be, on average, 2Nu new mutations in the population. The simplicity 
of this result often obscures an  important consequence: more mutations  enter 
large populations each generation than enter smali populations. One might ex- 
pect evolution to proceed more rapidly in large than small populations.  This is 
often the case, but  not when dealing with neutral evolution, as we are  in  this 
chapter. 

Of the new mutations that enter the population each generation,  a  fraction, 
1/(2N), will fix, on average. This follows  from our previous observation that  the 
chance that any particular allele  will  fix  in a population is equal to its frequency, 
which  is 1/(2N) for a new mutation.  Thus, the average rate of substitution, IC, 
is 2Nu x 1/(2N) or 

J k = u J  (2.11) 

In words, the  rate of substitution of neutral alleles, k, is equal to  the mutation 
rate  to neutral alleles, U. This is one of the most remarkable results in all of 
population genetics. At first it offends our intuition. The fixation of alleles  is 
caused by genetic drift.  The  strength of genetic drift depends on the population 
size. Our  intuition wants the  rate of fixation to depend on population size as 
well.  However, the number of mutations entering the population each generation 
also depends on population size and does so in such a way as to cancel out drift's 
dependency on population size  when deriving the  rate of substitution. 

There  are a few subtleties in the interpretation of the neutral  mutation rate, 
IC = U. In a population that is so large that 4Nu >> 0, a new mutant allele 
will almost never fix in the population simply because a large number of new 
mutations  enters the population each generation. If there are no fixations, how 
can Equation 2.11 be interpreted as the  rate of substitution? To understand 
this  paradox, we need an explicit model of a locus. One model in common  use in 
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Figure 2.4: A computer  simulation of the infinite-sites,  free-recombination model of a 
locus  experiencing neutral evolution  in a population of 25 individuals  with 4Nu = 0.5. 

population  genetics, the infinite-sites,  free-recombination  model, imagines that a 
locus is a very large (effectively infinite) sequence of nucleotides, each evolving 
independently.  Independent  evolution  requires that  there is a fair  amount of 
recombination between nucleotides, hence the “free recombination” part of the 
name. The most important consequence of having a large  number of nucleotides 
is that  the  mutation  rate per nucleotide is very small. For example, if the 
mutation  rate at a locus of 1000 nucleotides were loM6, the  mutation  rate at 
each nucleotide would be lopg. With such a  small  mutational  input  per  site,  it 
is plausible that mutations at sites will fix, even if there is never a fixation of 
an allele at the locus. If  we call the mutation rate per  site us, then  the  rate of 
substitution  per  site is k, = U,. If there  are n sites  in the locus, then  the  rate 
of substitution for the locus is 

IC = nk, = nu, = U, 

where U is the locus mutation  rate. 
Figure 2.4 presents the  output of a computer  simulation of the infinite-sites, 

free-recombination model. The vertical  axis is the frequency of mutations at 
sites.  During the course of the simulation, there were fixations at four  sites. 
However, at no  time was the  population homozygous, so there could not have 
been any  fixations of alleles. 

The infinite-sites model may be immediately  applied to DNA sequence data. 
For example,  in the previous chapter we saw that Drosophila  rnelanogaster and 
D .  erecta differed by 36 of 768 nucleotides. If we assume that  the two species 
separated 23 million years ago and  that  there were exactly 36 substitutions on 
the lineages leading to  the two species,* then  the  rate of substitution per site is 

36/768 substitutions/site 
2 x 23,000,000 years 

M substitutions/site/year. 

*There may  have  been  more than 36 substitutions a8 multiple substitutions at a site are 

k, = 

not detectable. 
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(The factor of two in the denominator is because the  total time  separating the 
two  species  is the sum of the lengths of the branching leading from their common 
ancestor to each  species.) If  we assume that  the substitutions  are  neutral,  then 
the  neutral mutation rate must be us = mutations per site per year. If 
Drosophila has one generation per year, then the mutation rate per generation 
is also If, on the other  hand, Drosophila has two generations per year, 
then the mutation rate per generation must be (1/2) x so that  the  rate of 
neutral  substitution matches the  rate of substitution per year estimated from 
the sequence data. 

Because the neutral rate of substitution depends only  on the  mutation  rate, 
it is natural  to expect that  the  rate of substitution will be approximately the 
same for  different groups of species. In fact,  the  apparent constancy of evolu- 
tionary  rates of proteins has long  been  used to argue that most evolution at 
the molecular level  is due to drift and  mutation alone. The neutral theory is 
concerned with this hypothesis. 

2.4 The neutral theory 

The  neutral  theory of molecular evolution claims that most allelic variation and 
substitutions in proteins and DNA are  neutral.  Neutral evolution has been 
called non-Darwinian evolution because most substitutions are  due to genetic 
drift rather  than  natural selection. However, the theory is not  in conflict with 
Darwin’s theory;  rather,  it simply claims that most substitutions have no in- 
fluence  on the survival of genotypes. Those few that do are  subject to natural 
selection and change the  adaptation of the species to its environment. The 
neutral  theory was controversial when first proposed and remains controversial 
today. Many individuals proposed the theory, more or less independently, in 
the 1960s. Among these were N. Sueoka, E. Freese, A. Robertson, M. Kimura, 
T. Jukes,  and J. L. King. The idea is so simple that many others undoubtedly 
thought of it at about  the same time. The first paper to develop  fully the popu- 
lation genetics aspects of the theory was the 1971 paper by Motoo Kimura  and 
Tomoko Ohta,  “Protein polymorphism as a phase of molecular evolution.” This 
paper is a true classic  in population genetics and will be examined in detail in 
this section. 

The first section of the  paper,  “Rate of Evolution,”  points  out that  the  rate 
of amino acid substitution per year  is remarkably constant among vertebrate 
lineages  for  each protein examined. This constancy led to  the concept of a 
molecular clock  which,  like the ticking of a very  slow  clock,  is the roughly 
constant rate of occurrence of substitutions  through geologic time. Hemoglobins, 
as illustrated in Figure 2.5, experience about one amino acid substitution every 
one billion years at each amino acid site in vertebrate lineages. Thus,  the 
rate of substitution  in hemoglobins  is approximately ICs = amino acid 
substitutions per amino acid site per year.* Cytochrome c evolves more slowly, 

*In  this  section, we will use the  subscript 8 on substitution  and  mutation  rates when they 
refer to  sites.  Kimura and Ohta  do not use subscripts. 



2.4 The neutral theory 33 

80 - 

.t: 
- 

- 

0 100 200 300 400 500 
Time to  common ancestor ( x  lo* years) 

Figure 2.5: The number of amino  acid substitutions in beta globin that occurred  in 
the lineages  leading to humans and various  species as a function of the time back to 
their common ancestors. 

about 0.3 substitution  per  site  per billion years,  or k, = 0.3 x The 
average rate among the proteins  examined was k, = 1.6 x lovg .  The  apparent 
constancy of the  rate of substitution is  viewed by Kimura  and  Ohta  as  strong 
evidence in favor of the  neutral theory.  They  argue that  natural selection,  being 
more opportunistic  and more  subject to  the vagaries of the environment,  might 
be expected to cause a much more erratic  pattern of substitutions. 

If substitutions  are neQtra1, we know from Equation 2.11 that  the average 
neutral  mutation  rate, us, must  be  1.6 x amino  acid mutations  per  amino 
acid site  per  year, which is strikingly close to nucleotide mutation  rates  as 
measured in the laboratory.  Is  this coincidence, or is amino  acid  evolution 
neutral  with k, = U, W Kimura  and  Ohta show how polymorphism data 
may be used to  support  the hypothesis that most of the protein  evolution  is, in 
fact,  neutral. 

The  next two sections of the  paper, “Polymorphism  in  Sub-populations” and 
“Mutation  and Mobility’’ deal  with  technical  points and may be skipped on first 
reading.  In the following section, “Heterozygosity and  Probability of Polymor- 
phism,” Kimura  and  Ohta  argue  that,  as typical  protein  heterozygosities are 
around  0.1, 4Nu must be approximately 0.1 (see their  equation 8). You should 
be  able to verify this using our  Equation 2.9. 

The  next section,  “Relative  Neutral  Mutation Rate,” is the most important 
as  it  puts  the  substitution  and polymorphism  estimates  together. The first 
issue concerns the  fact  that two mutation  rates  are’used; U in the expression 
4Nu W 0.1 refers to  the electrophoretically  detectable  mutations  in the  entire 
protein, while u8 in the expression k, = U, = 1.6 x lo-’ refers to all of the 
amino acid mutations at  a typical site in the protein. As electrophoresis does 
not  detect  all of the variation that is present,  some  adjustment  must  be  made so 
that  the  mutation  rates  are equivalent. Kimura  and  Ohta  argue  that a typical 
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protein is about 300 amino acids long and that  about 30 percent of the variation 
is detected by electrophoresis. Thus,  the  mutation  rate to electrophoretically 
detectable variation for the entire protein is 

U = 1.6 X lo-' X 300 X 0.3 = 1.44 X 

(Actually, their  paper  has an unfortunate typographical error that  reports  that 
U = 1.6 x The correct result, as given here, is viewed as  an overestimate, 
so Kimura  and Ohta use U = for the remainder of their investigation. 

The electrophoretic mutation rate is  in units of detectable  mutations per 
protein per year, whereas Equation 2.9 for the equilibrium value of 3t requires 
the mutation rate per generation. The conversion is simple. For example, if 
mice  have  two generations per year, then the mutation rate per generation will 
be half of For  mice, we have 

4Nu = 4N X 0.1, 

which  gives N 5 x lo6. The population size being estimated is called the 
effective population size, a concept that will be discussed in the next section. 
There was nothing in 1971 to suggest that  the effective  size of the house mouse 
was incompatible with about lo5 individuals, despite our subjective impression 
that house mice exist in vast numbers throughout the world. Thus,  the  data on 
protein polymorphism and  substitutions were  viewed to be mutually compatible 
and to support  the  neutral theory. 

Problem 2.10 If the human generation time is 20 years, what effective popula- 
tion size for humans is implied by the  data? 

Much has been written on the neutral theory since 1971. The theory slowly 
gained momentum through the 1970s, culminating in Kimura's book published 
in 1983. At that time, the neutral theory was the dominant explanation for 
most of protein and DNA evolution. More recently, the theory  has fallen on 
hard  times,  particularly with regard to protein evolution. There  are two aspects 
of the Kimura and  Ohta paper that presented problems for the  theory in later 
years. The first was the observation that  the  rate of substitution of amino acids 
is roughly constant per year. Our derivation of IC = U was done in  time  units of 
generations, not years. Thus,  the  rate of substitution should be roughly constant 
per generation rather  than per year. As a consequence, creatures with shorter 
generation times should evolve faster than those with longer generation times. 
This generation-time effect, a clear prediction of the neutral  theory, was not 
observed in proteins but was  seen in noncoding DNA. This  point, glossed  over 
in the Kimura and  Ohta  paper,  later caused a major shift in the  neutral theory. 
The new version, due mainly to Tomoko Ohta, assumes that most amino acid 
substitutions  are  not  neutral  but  are slightly deleterious. We  will return to this 
theory in the next chapter. 

The second point concerns the estimates of the effective population sizes 
using heterozygosity estimates. When the paper was written, most species that 
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had been examined, from Homo to Drosophila, had heterozygosities in the nar- 
row range of 0.05 < H < 0.15. Figure 1.4 shows this to be true for the averages 
across species in most major taxonomic groups. By implication, the effective 
population sizes of these species are also in a narrow range, in contradiction to 
the common  belief that  the population sizes of different  species  vary  over several 
orders of magnitude. Compounding this problem is the fact that  the effective 
sizes of some species, like Drosophila, might well be greater than 1O1O. If the 
neutral theory were true, then the heterozygosity of Drosophila should be much 
higher than  it is. 

There  are two refinements of the neutral theory that can explain the narrow 
range of heterozygosities. The first is Ohta's hypothesis that amino acid muta- 
tions are slightly deleterious and  thus  are less frequent than predicted under the 
strictly  neutral model.  Her theory will be explained in the next chapter. The 
second  involves the concept of the effective population size as developed in the 
next section. 

2.5 Effective  population size 

The model captured in Equation 2.1 contains explicit and implicit assumptions 
about  the population that appear to compromise its usefulness.  For example, 
the species  is assumed to be hermaphroditic and randomly mating. A more 
egregious assumption is the constancy of the population size.  Not  only do real 
populations fluctuate in size, they often fluctuate wildly. Do these simplifying 
assumptions render our investigations irrelevant, or can we make  some minor 
adjustments  and continue with our hard-won insights about genetic drift?  In 
many cases, we can make  some adjustments by using the concept of the effective 
population size. 

In most models of natural populations, no matter how complex, the het- 
erozygosity eventually decreases geometrically, just as it does in our idealized 
population. However, the  rate of decrease will no longer be 1/(2N), but will be 
some new rate, call it 1/(2Ne), that depends on the particulars of the model. 
The  parameter Ne is  called the effective  size of the population. It is the size 
of an idealized population whose rate of decay of heterozygosity is the same as 
that of the complicated population. Thus, we need  only investigate how each 
complicating assumption influences the effective  size of the population. From 
then  on, we can simply substitute Ne for N in all of the preceding equations. 

Of  all the factors that affect the effective size, none is more important  than 
fluctuations in the actual population size. Suppose, for example, the population 
sizes form a sequence N I ,  N Z , .  . . indexed by the generation number. The value 
of 3t in generation t + 1, as a function of the population size  in the previous 
generation, is 
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Figurh 2.6: The  time course for X in two populations.  The  dots  are from a population 
with changing size with a harmonic  mean of 17.875. The lines are  from a population 
whose size is constant at 17.875 individuals. 

Using the same argument that resulted in Equation 2.3, we obtain 

At this  point, we can use the definition of the effective population size to argue 
that  the effective  size of a population with fluctuating  actual  population sizes 
satisfies the equation 

(2.12) 

On the left side is 7-l of an idealized population of actual size Ne and on the right 
side is 7-l for the population complicated by population size fluctuations.  The 
effective  size of the complicated population is found by solving Equation 2.12 

.for Ne.  
Equation 2.12 may be solved  by using the techniques of Appendix A for 

approximating the product of terms  that  are close to one. The left side of 
Equation 2.12  is approximately exp(-t/2Ne), which  is derived with the help of 
Equation A.3. The right-hand side is  covered by Equation A.4. Together we 
get 

e-t/zNe M e - l / 2 N i  

Equating the exponents and solving  for the effective size, we have, 

(2.13) 
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which is our final expression for the effective size of the population. You might 
recognize the formula for Ne as being the harmonic  mean  population size. The 
harmonic  mean of the numbers zl,z2, . . . , zn is the reciprocal of the average of 
the reciprocals of the zi, 

1 

One of the classic inequalities of mathematics  states  that  the harmonic  mean of 
a sequence of numbers is always less than or equal to  the  arithmetic  mean. 

Figure 2.6 illustrates the decay of 'tl in a  population whose size oscillates 
such that  it is at 50 individuals for four generations, then 5 individuals for one 
generation, then 50 for four,  and so forth.  The figure also shows the decay of 
variation  in a population of constant size 17.875, which is the harmonic  mean 
population size of the oscillating population. The two populations  clearly lose 
their  variation at the same  rate, even though  they  do  not  share  exactly the same 
values for R. 

The result that  the effective size equals the harmonic  mean  population size 
is quite  important because the harmonic  mean is much more sensitive to  small 
values than is the  arithmetic mean. For example,  suppose the  population size 
is 1000 for nine  generations and 10 for one  generation. The  arithmetic  mean  in 
this case is 

9 1 - x 1000 + - x 10 = 901. 10 10 
The  harmonic mean is 

which is about  an order of magnitude  smaller  than  the  arithmetic  mean pop- 
ulation size. Were species to experience occasional but recurring  crashes in 
population size, called bottlenecks by population  geneticists, then  the effective 
sizes of species would be considerably smaller than their "typical" sizes. 

Population size fluctuations  can  account for two of the problems  with the 
neutral  theory  mentioned in the previous section. The first is the problem of 
too  little molecular variation  based  on  our sense of current  population sizes. If 
the sizes of most species do  fluctuate wildly, then  their effective sizes may be 
close to lo5 as required by the  neutral  estimation, even though  their  current 
sizes are several  orders of magnitude  larger.  The second problem  concerns the 
narrow  range of heterozygosities. Recall that  the harmonic  mean is determined 
more by the population size during  bottlenecks than  during times of abundance. 
However, there is a  limit to how small  population sizes can  be,  as  rare species 
inevitably face extinction.  In  fact,  extant species are precisely those species that 
have not suffered recurring  catastrophic  crashes  in  population sizes. The  net 
effect is to  make the harmonic  means of species more similar than their  actual 
numbers a t  any point in time.  Although we should still  be uncomfortable  with 
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the narrow range of heterozygosities, we can be less uncomfortable given insights 
provided by our analysis of the effective  size of species. 

Other factors also affect the effective size, but  not so dramatically as bottle- 
necks. In randomly mating dioecious  species with different numbers of males, 
Nm, and females, N f  , the effective  size  is 

Ne = 4NmNf 
N f  + Nrn' 

For example, suppose the number of males  is a times the number of females, 
Nm = a N f .  The  ratio of the effective  size to  the  actual size  is then 

N.  4a 

In a species with one-tenth the number of males as females, the effective  size 
will be about 33 percent of the  actual population size. This is not a particularly 
extreme reduction. Except for  species with population sizes so small that ex- 
tinction seems imminent anyway, a 33 percent reduction in the effective  size  is 
of little consequence. Our estimates of actual population sizes are so imprecise 
that  the adjustment required for such factors  as different numbers of the sexes 
'often seem unimportant compared to  the very large reductions that come with 
fluctuations in population size. 

2.6 The coalescent 

The parameter 8 = 4Nu determines the level of variation under the neutral 
model. Assuming that  the variation at a locus  is neutral, d may be estimated 
by using the observed homozygosity and  Equation 2.6, as done, for example, 
by Kimura and Ohta. If the  data come as DNA sequences rather  than from 
protein electrophoresis, then  it is possible to use the theory of coalescents and 
the additional information in the sequence to obtain a better  estimate of 8. 

A coalescent  is the lineage of alleles in a sample traced backward in time 
to their common ancestor allele. The left side of Figure 2.7 illustrates a typ- 
ical coalescent  for a sample of four  alleles. Each of the alleles in the sample 
is descended from an allele in the previous generation. In a large population, 
the immediate aricestors of the sampled alleles are likely to be distinct. How- 
ever, if the ancestors of the sampled alleles are followed backward for a long 
time, eventually a generation will be found with a common ancestor of two of 
the alleles. In the figure, the two central alleles have a common ancestor t l  

generations in the  past. At t l  we say that a coalescence occurred because the 
number of lineages in the coalescent is reduced by one. The next coalescence 
occurs t 2  generations in the  past, and the final  coalescence occurs t 3  generations 
in the  past. Time, when  discussing coalescents, is  always measured in  units of 
generations in the  past. 

The coalescent is sometimes called the genealogy of the sample because it 
captures the genealogic relationships of the sampled alleles. The coalescent can- 
not be known, of course, because there is  no  way to know  which  alleles share 
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Figure 2.7: On the left is an example of  a  coalescent for  four alleles. On the right is 
a  graph  showing the size of the Coalescent as a function of time measured  backward. 

which  common ancestors, nor is there any way to know the times of coalescence 
events. Coalescents are, useful constructs because in natural  populations  muta- 
tions occur on the lineages and  these  mutations can be used to infer some of 
the coalescent and to estimate 8. Each mutation on the coalescent results in a 
segregating site in the sample. The number of segregating sites in a sample of 
n alleles, S,, turns  out  to contain enough information to estimate 8. 

Problem 2.11 Convince yourself that each mutation  results in a segregating  site 
by drawing some coalescents, maxkingrandom spots where mutations occur, and 
then constructing  the set of DNA sequences implied by those mutations. 

Although we cannot know t l  , t2 , and t3 for a sample of four alleles, Figure 2.7 
shows that  it is possible to  state  that  the  total time in the coalescent, T,, depends 
on these times through 

Tc = 4 X tl  + 3 X (t2 - t l)  + 2 X (t3 - t2) 
= 4T4 + 3T3 + 2T2, 

where Ti is the  time required to reduce a coalescent with i alleles to one with i - 1 
alleles. The time course of the number of alleles in the coalescent is illustrated 
on the right side of Figure 2.7. 

For a neutral  mutation  rate of U, the expected number of mutations in the 
coalescent is Tcu. As  we will soon see, the expected value of T, for a  sample of 
four  alleles  is 

which  implies that, on average, there will be 



40 Genetic Drift 

mutations  in a sample of four alleles. Because each mutation  in  the coalescent 
contributes one segregating site,  the expected number of segregating sites in a 
sample of four alleles  is also 

E(S4) = 6'(11/6), 

which suggests that e* = (6/11)S4 should be a good estimator for B in a sample 
of four alleles.* 

With  this motivation, it is now time to tackle the expected time  in a coales- 
cent for a sample of n alleles. The time interval for the first coalescence is called 
T,, the time interval for the second  coalescence, Tn-l, and so forth back to  the 
time interval for the final Coalescence, T2, The mean length of each interval may 
be'readily found if  we know the probability that a coalescence does not occur in 
the previous generation or, as we prefer to call it,  the next  ancestral  generation. 

Consider the history of the n alleles  in turn.  The first allele has, of course, 
an ancestor allele in the first ancestral generation. The second allele will have 
a different ancestor allele with probability 

1 2N-1 l"=- 
2N  2N * 

The right-hand side of this  equation is particularly informative because it shows 
that  there  are a total of 2N possible ancestors for the second allele, but only 
2N - 1 that  are different  from the first allele. The probability that  the third 
allele does not  share  an ancestor with the first two, assuming that  the first two 
do not  share  an  ancestor, is (2N - 2)/(2N); the  total probability that  the first 
three  do  not  share  an ancestor is 

2N-1 2 N - 2  
2N  2N ' 

x- 

With an obvious leap of intuition, the probability that  the n alleles all have 
different ancestors is 

where terms of order N-2 and smaller have been ignored in the approximation. 
The probability that a coalescence occurs is one minus the probability that it 
does not,  or 

1 + 2 + + (n - 1) - n(n - 1) - 
2N 4N 

where the final step uses the fact that  the sum of the first m integers is 

1 + 2 + - + m = m(m + 1)/2. 

*A common  convention in statistics notates the estimator of a parameter aa the parameter 
with a hat over it. 
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If the probability that  the first coalescence occurs  in  any  particular gen- 
eration is n(n - 1)/(4N), then  the probability  distribution of the  time un- 
til the first coalescence is a geometric  distribution  with  probability of success 
p = n(n - 1)/(4N). (See Appendix B for properties of the geometric  distribu- 
tion.) The  mean of the geometric  distribution is the reciprocal of the probability 
of success, giving 

The  beauty of the coalescent approach is that all of the  hard work is now over. 
A little reflection shows that  the mean  time  interval  leading  from  a coalescent 
with i alleles to one  with i - 1 alleles is just 

4 N  E{Ti} = - i(i - 1)'  
(2.14) 

as  there is nothing  special about n in the previous  derivation of ET,. 
The  total  time in all of the branches of a coalescent is 

n 

i=2 

which, using the fact that  the expectation of the sum of random  quantities is 
the sum of the  expectations of those  quantities (see Equation B.11 on  page 162), 
is 

n , l  E{Tc} = C iE{Ti} = 4 N  C - 
i - l  

i=2  i=2 

Recalling that  the expected  number of segregating  sites is the  neutral  mutation 
rate, U, times the expected  time in the'coalescent, we have 

" 1  E { s ~ }  = UE{T,} = e C - (i - 1)'  
i=2 

which suggests that 

(2.15) 

should be a good estimator for e = 4Nu. 
For example, there were S11 = 14 segregating  sites in Kreitman's ADH 

sample. The  denominator of  th,e right-hand side of Equation 2.15 for n = 11 is 
2.93, so the  estimate of 4Nu is 9 = 4.78. Theta for a  nucleotide  site, rather  than 
for the entire  locus, is 4.78/768 = 0.0062. These  estimates  must  be viewed with 
some skepticism because they require that  the neutral model accurately reflect 
the evolutionary  dynamics of the ADH locus and  that  the  population be  in 
equilibrium. Most population  geneticists have reservations about  the  neutrality 
of replacement  mutations, but  many  do accept the neutrality of silent  mutations. 
Thus, you  will frequently see 6 estimated for silent variation only. In  the case of 
ADH, this involves including only the 13 segregating  sites  with  silent  variation. 
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Problem 2.12 Estimate B for silent variation a t  the ADH locus. 

The coalescent may be used to derive the probability that two  alleles  different 
by origin are different  by state, g. The two  alleles  will be different if a  mutation 
occurred on the lineages leading from their common ancestor; otherwise they 
will be identical. As the lineages of the two alleles are  traced backward in 
time,  either a coalescence  or a mutation will occur first. The probability that a 
coalescence occurs in any particular generation is 1/(2N), and  the probability 
that a mutation occurs is 

1 - (1 - u)2 m 2u. 

The probability that a mutation is the first event to occur is just its relative 
probability of occurrence, 

2u - 4Nu 
2u + 1/(2N) - 1 + 4Nu’ 

which  is the same as  Equation 2.9, This derivation of 2 using a coalescent argu- 
ment is both easier and more instructive than  the difference equation approach 
used in Section 2.3 and hints at the power of the coalescent for solving osten- 
sibly difficult problems. The Coalescent has become an indispensable construct 
for the analysis sequence data in population genetics. Dick Hudson, one of the 
pioneers in the application of coalescent theory, has written an excellent paper 
describing its use (Hudson 1990). 

2.7 Binomial  sampling 

The description of genetic drift in Section 2.2 was based on the probability of 
identity by state, 9. Although 9 is perfect for describing the average rate of , 

decay of variability, it does not give a good  feeling  for the underlying randomness 
of genetic drift. In fact,  the  equation 

t 

N t  =No (1- A) 
could  give the impression that  the heterozygosity of any particular population 
decreases nonrandomly. Nothing could be further from the  truth,  as illustrated 
in Figure 2.8, which  uses the same data as Figure 2.1 but plots heterozygosities 
rather  than allele frequencies. Note that  the heterozygosity of any particular 
population does not decrease .monotonically. Rather,  it  jumps  up  and down, 
eventually hitting zero and  staying  there. After staring at Figure 2.8 for a 
while, it is reasonable to  start wondering exactly what Nt really is. What 
does it correspond to in Figure 2.8? A promising conjecture is that Nt is the 
average heterozygosity of a very large number of replicate populations. Not a 
bad conjecture, but  it is off  by a factor of 1 - 1/(2N), as we shall see in this 
section. 

The  short algorithm used for the computer simulations at the beginning 
of this  chapter also happens to be an  accurate description of the way most 
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Figure 2.8: The heterozygosity for  each of the five populations simulated by computer 
and  illustrated  in  Figure 2.1. 

population geneticists model genetic drift.  The  heart of the algorithm is the 
copying of alleles  from the current generation into the next generation, which 
is repeated 2N times. The probability that i A1 alleles make it  into the next 
generation is the binomial probability 

Prob{i AI alleles} = ( 2 N ) !  i 2N-i  i! (2N - i ) ! P  ’ 
where i can be 0,1, .  . . 2 N .  The binomial distribution (see Appendix B) de- 
scribes the probability of i successes  in n independent experiments, where the 
probability of success in any one experiment is p .  With genetic drift, the exper- 
iment is repeated 2N times and  the probability of success-the probability of 
copying an A1 allele-is the allele frequency p .  

The mean of a binomial random variable with parameters n and p is np. 
Thus,  the mean number of A1 alleles to  appear in the next generation is 

E{i}  = 2Np.  

The allele frequency in the next generation is i / 2 N .  The mean allele frequency 
is 

E{ i /BN}  = E { i } / 2 N  = p ,  

by Equation B.9. In other words, the mean allele frequency does not change 
under genetic drift. 

A more complete description of the mean change in p is 

E { A N ~  I p }  = E { i / 2 N  - p  I p }  = E { i / 2 N  I p }   - p  = 0. 

This  stream of equalities uses a  a new symbol, I, which stands for given, making 
the expectation a conditional expectation. For example, E{Ap I p }  is the 

. . . . . . .  . .  , ... “.,, ~ ,...., ” . . . , , ._ ,  . . . . .  , . . , .  . . .  .,_.. . . , . . .  , .  . . , ,  .,,. 
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mean change in p given its  current value, p. We need this device because we 
cannot know with certainty  what p will be in any  particular  generation  as it 
is changing at random each generation. But, if  we were told its value in a 
particular  generation,  then we could say something about  its value in the next 
generation. The I symbol is shorthand for being told the current value of p. 

The variance of the change in the allele frequency may be found by a similar 
argument, 

Var{Ap 1 p} = Var{i/2N - p  I p} = -. Pq 
2N 

The  last  step is interesting. First, note that  the conditioning on p makes the 
expression i/2N - p the difference between a random  quantity, i/2N, and  a 
nonrandom  quantity, p. (p is not  random because of the conditioning on its 
value.) From Equation B.10 we know that 

Var{i/2N -p} = Var{i}/(2N)2 

when p is a constant. As Var{i} = 2Npq, we obtain  our  important  result 

(2.16) 

All  of the above shows that  the number of A1 alleles in the  daughter gener- 
ation is binomially distributed  and that  the mean and variance of the change in 
the allele frequency are 

E{Ap} = 0 

Var{Ap} = -. Pq 
2N 

(2.17) 

(2.18) 

The fact that  the variance is  inversely proportional to  the population size means 
that  the dispersion of the allele frequency around the current value will be less in 
larger populations. The  actual distributions of allele frequencies in the  daughter 
generation for population sizes of 10 and 100 are illustrated in Figure 2.9. The 
narrow range of likely p values  for the larger population size is apparent. 

How can we connect this development of genetic drift with the previous one 
based on g? Let’s begin with some notation. Call the allele frequencies in the 
tth generation pt and qt and the homozygosity 

Our conjecture that Gt is equal to  the mean of Gt suggests that a natural 
place to begin our investigation is with the expected value of Gt+l given its 
value in generation t .  Rather  than conditioning on the current value of the 
homozygosity, it is somewhat easier to condition on the allele frequency in the 
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Figure 2.9: The  probabilities of allele  frequencies  after  one  round of random  mating 
for population  sizes of N = 10 and N = 100 and initial allele  frequency p = 1/3. 

current  generation, which amounts to  the same  thing, 

- p m  + p ;  p m  q,2 

= - + (1 - --,(p," +a;, 

" 

2N 2N 
1 1 

2N  2N 
1 1 = - + (1 - ")Gt. 

2N 2N 

In verifying these  steps, recall that 

and that 
2pq = 1 - p 2  - q 2  

At this  junction, we have 

1 1 
E{Gt+l I P t }  = - 2N + (1 - -)Gt, 2N (2.19) 

which  is almost the same  as  Equation  2.1. 
Equation 2.19 differs from Equation 2.1 in two  ways. The first is that  the 

quantity  on the left side of Equation 2.19, E{Gt+l I p t } ,  looks like a different 
beast than  the analogous quantity on the right side, Gt. By contrast, 9 appears 
on both sides of Equation 2.1. The  other difference is that  both E{Gt+l I 
p t )  and Gt are  actually  random variables that depend on  the allele frequency 
in  generation t ,  while Bt+l and Gt are  both  both  nonrandom  quantities. To 
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make Equation 2.19 like Equation 2.1, we must, at  the very least,  remove,the 
randomness, which can be accomplished by taking  the  expectation of both sides 
with respect to  the distribution of the allele frequency at time t. Write the 
expected value of Gt with respect pt as 

and that of Gt+l as 

The first line uses the fact that  the order in which expectations  are  taken does 
not  matter.*  The second line uses the definition of G. The  third line is trivial 
as the expected value of a  constant, Dt+l in this case, is just  the constant. 
Substituting these results into  Equation 2.19 gives 

- 1 
Gt+l = - + (1 - ”)Gt, 

1 -  
2 N   2 N  

which  is the same as Equation 2.1 and whose solution is 

(2.20) 

We do not need a line over H0 because the initial condition is a fixed quantity, 
so there is  no  need to take  its mean. 

Just because Bt and Et satisfy the same equation does not mean that they 
are equal. The solution to a dynamical equation like Equation 2.1 depends on 
the initial value of the  state variable. You should have  solved Problem 2.6 by 
now and should know that 

Go=-+ 1” 
2 N  ( 2 N  ‘>go, 

or, equivalently, that 

H0 = ( 1  - &) No. 
Plugging this  into  Equation 2.20 gives 

which  differs  from the value of 3tt given in Equation 2.3 by the factor 1 - 1 / 2 N .  
For large populations, this  factor will be so close to one that Gt M Gt. Finally, 

- 

*Although in general expectations cannot be reversed, in our context they may be. 



2.8 Answers to  Droblems 47 

we are able to conclude with confidence that the expected heterozygosity of a 
population decreases at the  rate 1/2N. 

While the amount of work needed to reach a rather simple conclusion might 
seem excessive, it is  work well spent. Not only did we learn more about  the 
stochastic  nature of genetic drift, but we also put ourselves in a position to 
solve some more important problems, like the fixation probability of a selected 
mutation. 

2.8 Answers to problems 

2.1 The probability that a  particular allele is not chosen on a single draw is 
1 - 1/(2N). As each draw is with replacement, the probability that  the 
allele  is not drawn at all is [l - 1/(2N)]". For large populations,  this 
probability approaches e-l 0.37, using the hint in the  statement of the 
problem. 

2.2 Here is a simulation written in the C programming,language. In  the declarslr 
tions int means an integer data  type and double means a double-precision 
floating-point data type.  The for statement is a standard loop whose ar- 
guments give the initial value of the counter, the  stop condition,  and the 
change in the  counter for each pass through  the loop, respectively. The 
++ operator increments the variable on its left by one. (double) before 
a variable converts the variable from an integer to a double. random() 
is a function returning an integer random  number,  and RANDJAX is the 
maximum random integer. Thus, random0 / (double) RANDAAX eval- 
uates to random numbers uniformly distributed between zero and one. 
(Different implementations of C may use different conventions for random 
numbers.) 

#include cstdlib.h? 

main0 I 
/*  declarations */ 
int twoN = 40; 
double p = 0.2; 
int generat ion number-of -A- l i ; 
/*  the simulation */  
for (generation = 0; generation < 100; generation++) { 
number-of-A-l = 0; 
for (i = 0; i < twoN; i++) 

if (random0 / (double) RAND-MAX < p) 
number-of-8-1 = number-of-A-l + l; 

p = (double) number-of-A-1 / twoN; 
printf ("%f \n" p) ; 

1 
1 
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2.3 One approach is to simulate the process by flipping a coin and designat- 
ing heads as  the event that  the individual in the next generation is a 
heterozygote and  tails  as the probability that  it is a homozygote. The 
average number of flips until  a  tail  appears is the same as the average 
number of generations until the population becomes homozygous. Alter- 
natively, you can notice that  the time to homozygosity  is a geometric 
random variable and use the properties of geometric random variables as 
given  in Appendix B to obtain the answer. 

2.6 If sampling is with replacement, then the probability of choosing  allele 
Ai on  two  successive draws from a given population is p:. Thus,  the 
probability of choosing  two  alleles that  are identical by state is C p:,  which 
is the homozygosity of the population, G, as defined in Equation 1.2. G 
can be described in an entirely different way. Two  alleles sampled with 
replacement will be identical by state if they are identical by origin, which 
occurs with probability 1/2N. The probability that two alleles that  are 
different by origin are identical by state is G. Thus, 

G = L  2 N  + ( 1" 2h) 9. 

2.7 The number of mutations that are one step away  is obtained by noting that 
there  are 3000 sites where a mutation can occur and  three nucleotides that 
can replace the original, giving 3000 x 3 = 9000 different mutations. For 
the number that are two steps away, note that  there  are 3000 sites for the 
first mutation  and 2999 for the second mutation, so 

3000 X 2999 X 3 X 3 = 80,973,000 

mutations  are two steps away. 



Chapter 3 

Natural Selection 

The results of natural selection, the evolutionary force  most responsible for 
adaptation  to  the environment, are evident everywhere, yet it is remarkably 
difficult to observe the time course of changes brought about by selection. The 
reason, of course, is that most evolutionary change is extraordinarily slow.  Sig- 
nificant changes in the frequencies of genotypes take longer than  the lifetime 
of a human observer. This  temporal imbalance is the greatest obstacle to the 
study of evolution and is the main reason why so much of our understanding 
of evolutionary processes  comes  from theoretical and  mathematical  arguments 
rather  than direct observation, as is typical in other  areas of biology. 

Occasionally, we are able to observe natural selection in action  either be- 
cause the  strength of selection is so great that change occurs very  quickly or 
because the organism, perhaps a bacteria or virus, has a very short generation 
time. The  European scarlet tiger moth, Panaxia  dominula, provides one well- 
studied example. In a population just outside of Oxford, England, an allele that 
reduces the  spotting on the forewing, the medionigra allele,  is found in fairly 
high  frequency. As this allele  is found nowhere else, it has attracted  atten- 
tion from butterfly enthusiasts. The frequency of the medionigra allele  declined 
fairly steadily from 1939 until 1955, after which it began hopping around  errat- 
ically, as illustrated in Figure 3.1. Although the complete record is  difficult to 
interpret, the period of steady decline appears to be a case of natural selection 
preferring the common  allele  over the medionigra allele. If so, how strong is the 
selection? Other questions come to mind as well.  Why  is the medionigra allele 
less fit? If it is  less fit, how did it get to a frequency of 10 percent before begin- 
ning its decline?  While we  will not be able to provide complete answers to any 
of these questions, we  will be able to discuss them much more intelligently after 
a theoretical investigation of the  nature  and consequences of natural selection. 

In this  chapter, we will  discover how natural selection changes allele frequen- 
cies  by examining some  one-locus  models of selection. Natural selection works 
when genotypes have  different fitnesses.' To a geneticist, fitness is just another 
trait with a genetic component. To an evolutionist, it is the ultimate trait be- 
cause it is the one upon which natural selection acts.  Fitness is a complicated 
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Figure 3.1: The observed  frequency of the medionigra allele  in the scarlet  tiger moth 
population compared to the expected frequency  assuming a 10 percent  disadvantage. 

trait, even in the context of a simple one-locus, two-allele model. There is  in- 
dividual fitness, genotype fitness, relative fitness, and  absolute fitness. We  will 
spend some time making these different aspects of fitness clear before tackling 
the problem of the dynamics of natural selection. 

An examination of the dynamics of natural selection quickly leads to  the con- 
clusion that  the dominance relationships between  alleles affecting fitness have 
a profound affect  on the outcome of selection. Fortunately, the dominance of 
fitness alleles can be investigated experimentally; in Section 3.5 a study of vi& 
bility in Drosophila  melanogaster populations is described. A major conclusion 
of this  study is that  there is an inverse homozygous-heterozygous effect  for  dele- 
terious alleles:  alleles that have large deleterious effects  when  homozygous tend 
to be nearly recessive, whereas alleles with small homozygous  effects tend to be 
nearly additive. A casualty of the study is overdominance, the form of domi- 
nance that is often invoked to explain selected polymorphisms. However, the 
subsequent section shows that selection in a variable environment can promote 
polymorphism even  when heterozygotes are  intermediate  in fitness. 

Section 3.7 examines the interaction of genetic drift and selection. Genetic 
drift has a major influence  on the  fate of rare alleles  even in very large popula- 
tions. In fact,  the sad fate of most advantageous mutations is extinction, which 
leads to  the view that evolution is fundamentally a random process that is not 
repeatable or reversible. Finally, a version of the  neutral  theory  that involves 
the fixation of deleterious alleles  is described. 

This is an ambitious chapter, with many more new topics than were in 
the preceding chapters. It is also more  difficult than  the previous material 
because the mathematics of selection lacks the elegance and simplicity of the 
mathematics of drift and  mutation. 
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Figure 3.2: The simple life cycle used in the fundamental model of selection, 

3.1 The fundamental model 

Natural selection is most easily studied in the context of an autosomal  locus in 
a hermaphroditic species whose life cycle moves through a synchronous cycle of 
random  mating,  selection,  random  mating, selection, and so forth.  Our  entrance 
into the cycle is with  newborns  produced just after a round of random  mating 
by their  parents.  Figure 3.2 shows that  the frequency of the A1 allele among the 
newborns is called p, which.is the same as  the allele frequency in  their  parents. 
As their  parents  mated at random,  the genotype frequencies of the newborns 
will conform to Hardy-Weinberg  expectations. 

The newborns  must  survive to  adulthood  in  order to  reproduce. The prob- 
ability of survival of an individual will, in  general,  depend on the genotype of 
the individual.  Let the probabilities of survival or,  as  they  are more  usually 
called, the viabilities of A I A I ,  A1A2, and A2A2 individuals be w11, w12, and 
2022, respectively. Viabilities may be  thought of aa either  probabilities of sur- 
vival of individuals or the fraction of individuals that survive. The  latter allows 
us to see immediately the consequences of selection because the frequency of a 
genotype  after selection is proportional to  its frequency before selection times 
its viability, or 

frequency  after selection cx newborn-frequency x viability. 

For example, the frequency of A1 A1 in  the  adults is proportional to p2wll ,  

To obtain the relative frequencies of the  three genotypes  in the  adults, we 
must find a constant of proportionality  such that  the sum of the  three  genotype 
frequencies in the  adults is one. The following worksheet shows how this is done. 

Genotype: A1 A1 A1 A2 A2A2 
Frequency in  newborns: P2 2P9 (l2 
Viability: W11 W12 W22 
Frequency after selection: p 2 w l l / a  2pqw12/a q2w22/a. 

In = P  W11 + 2PW12 + Q2W22, 

The  constant of proportionality, 
2 

is chosen such that 
P2Wll 2P9W12 Q2W2Z 

a +-+-=l, 
W W 
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as required. The quantity tij has special meaning in population genetics. It is 
called the mean fitness of the population. (If the concept of a mean is unfamiliar, 
read from the beginning of Appendix B through page 157.) 

After selection, the frequency of the A1 allele may  have changed. The new 
allele frequency, p‘, is 

p’ = P2Wl + pqw12 
lz 

(Don’t forget that each heterozygote has only one A1 allele.) The change in the 
frequency of the A1 allele  in a single generation, A,p = p‘ - p ,  follows from 

p”p= 

which  simplifies to 

This is probably the single most important  equation in all of population genetics 
and evolution! Admittedly, it isn’t pretty, being a ratio of two polynomials with 
three  parameters each. Yet, with a little poking around,  this  equation easily 
reveals a great deal of the dynamics of natural selection. 

Problem 3.1 In 1940, the frequency of the medionigra dlele in the Oxford 
population was about p = 0.1. If the viabilities of the  three  genotypes were 
w11 = 0.9, w12 = 0.95, and w22 = 1, what would  be the frequency of medionigra 
in the newborns of 1941? 

3.2 Relative fitness 

Notice. that  the  terms in the numerator  and denominator of Equation 3.1 all 
have a viability as a factor. Thus, if  we were to divide the numerator and 
denominator by a viability, say by w11, every viability in Equation 3.1 would 
become a ratio of that viability and w11, yet the numerical value of Ap would 
not change at all. In other words, we could  use as our definition of viability 
either the original definition based on absolute viabilities or a new one based on 
the relative viabilities of genotypes when compared to one particular genotype. 

Genotype: AIAI .AI& A d 2  
Viability W1 1 W12 W22 
Relative viability: 1 w12/w11 wZ2/wll 

In either  case, the dynamics of selection as captured in Equation 3.1 are the 
same. An important insight in its own right,  this is also of great  utility  as  it 
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allows a much more informative choice of parameters than  the wij’s used thus 
far. 

Up to  this  point, Wdj has been  called the viability of genotype AiAj. More 
often, wij is  called the fitness, or sometimes the absolute or Darwinian fitness, 
of genotype ArAj. In nature,  the fitness of a genotype has many components 
including viability, fertility, developmental time,  mating success, and so forth. 
Most of these components, other than viability, cannot be included in a simple 
model  like that defined  by Equation 3.1. Yet, if the differences in fitnesses 
between genotypes are small, Equation 3.1 is a good approximation to  the  actual 
dynamics as long as  the values of the wij are chosen appropriately. Here, we 
will not investigate these more complicated models but will  from this point on 
refer to waj as a fitness and allow it to take on any values greater than or equal 
to zero. As the dynamics of selection depend on relative fitnesses, nothing really 
changes by allowing this broadened scope for Wij. 

A common notational convention  for relative fitnesses is 

Genotype: A1 A1 Al-42 A2A2 
Relative fitness: 1 1 - hs 1 - s 

where 1 - hs = w12/wll and 1 - s = w22/w11. 
The  parameter S is  called the selection  coefficient. It is a measure of the 

fitness of A2A2 relative to  that of A1A1. If the selection coefficient  is positive, 
A2A2 is  less fit than A1A1; if it is negative, A2242 is more fit. In most of what 
follows, we will assume that  the selection  coefficient  is in the range 0 5 S 5 1. 
Nothing is lost in doing this because the labeling of alleles  is completely arbi- 
trary. The symbol A1 will usually be attached to  the allele  whose homozygote 
is  more fit than  the other homozygote. 

The  parameter h is  called the heterozygous effect. It is a measure of the 
fitness of the heterozygote relative to the selective difference  between the two 
homozygotes. As such, it is really a measure of dominance, as shown in the 
following table. 

h = 0 A1 dominant, A2 recessive 
h = 1 A2 dominant, A1 recessive 

h < 0 overdominance 
h > l underdominance 

0 < h < 1 incomplete dominance 

Only the cases of incomplete dominance, overdominance, and underdominance 
are of general evolutionary interest. The cases of complete dominance given  in 
the first two  lines of the  table  are regarded as special cases that  are unlikely to 
occur for any pair of naturally occurring alleles.* Even  classic  cases of complete 
dominance like  “recessive” lethals in human populations are now thought to  be 
cases of incomplete dominance with s = 1 and h small, say about 0.01, but 
definitely greater than zero. The case h = 112 is of evolutionary importance 

*Cases of complete dominance  abound for morphologic traits. Our interest, however, is 
only in the effects of alleles on fitness. 
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Figure 3.3: Properties of directional selection with h = 0.5 and 8 = 0.1. The left-hand 
graph  shows the change  in the allele  frequency  in a single generation. The right-hand 
graph  shows the evolution of the allele  frequency over 100 generations. 

as many alleles with a very small effect  on fitness are close to additive; that is, 
close to  the situation where the heterozygote is exactly intermediate between 
the two homozygotes. 

Problem 3.2 If the fitnesses of the genotypes A1A1, A1A2, and A2A2 are 1.5, 
1.1, and 1.0, respectively, what are  the  vdues of the selection coefficient and  the 
heterozygous effect? 

Problem 3.3 Fitnesses must always be greater  than  or equal to zero. What 
limitations does this place on the values  of h for a given  value  of S, assuming 
that S 2 O ?  

Equation 3.1 for the single-generation change in the frequency of the A1 
allele, using relative frequencies, becomes 

(To obtain  this  equation, simply make the substitutions 2011 = 1, w12 = 1 - hs, 
and w22 = 1 - S in equation 3.1.) The mean fitness becomes 

= 1 - 2pqhs - 9's (3.3) 

when using relative fitnesses. Not  only  is Equation 3.2 simpler than Equa- 
tion 3.1, it is also more suggestive of the dynamics. We will soon see that h 
determines where the allele frequency ends up and S determines how quickly it 
gets there. 
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Thus far, we have discussed absolute and relative fitness, but  not individual 
fitness, which is, as  its name implies, a property of an individual as opposed 
to a genotype. If the only factor determining fitness were viability, then an 
individual's fitness would  be either zero or one, depending on whether or not the 
individual survived to reproduce. The absolute fitness of a particular genotype 
is simply the average of the individual fitnesses of all those individuals with 
that genotype. For example, if the probability that an A2Az individual's fitness 
is  one equals 0.9 and is zero equals 0.1, then the absolute fitness of the AzA2 
genotype is 

0.9 x 1 + 0.1 x 0 = 0.9. 

3.3 Three kinds of selection 

Equation 3.2  may be used to solve the following problem: Given the initial 
frequency of the A1 allele and the parameters S and h, what will be the  ultimate 
fate of the A1 allele  in the population? Will it  take over in the population 
(p + l), disappear from the population ( p  + 0), approach some intermediate 
value (p + a), or not change at all? As we shall see, all four outcomes are 
possible. Which one prevails depends on the dominance relationships between 
alleles and on the initial frequency of the allele. 

The  type of selection that Darwin had in mind  in On  the  Origin of Species 
(1859)  is  called directional selection. Directional selection occurs with incom- 
plete dominance (0 < h < 1). The fitness of AI  AI exceeds that of A1A2, which, 
in turn, exceeds that of AzA2. It should come as no surprise that p continually 
increases or, equivalently, that A s p  > 0. The change in the allele frequency 
in a single generation, A s p ,  as a function of p is illustrated in the left-hand 
side of Figure 3.3. Because S > 0, Equation 3.2  shows that  the sign of A s p  is 
determined by 

ph + dl - h) ,  

which  is  always positive with incomplete dominance (0 < h < 1). Thus,  the 
allele frequency always increases no matter what its  current value and,  as a 
consequence, p + 1, as illustrated in the right-hand frame of Figure 3.3. The 
rate of change of p is strongly dependent on p itself. Evolution by natural 
selection proceeds very  slowly  when there is little genetic variation; that is, 
when p is  close to zero or one. Selection  is  most  effective  when genetic variation 
is near its maximum, p = 1/2. 

Problem 3.4 Graph A s p  for S = 0.1 with h = 0.1 and h = 0.9. How does 
dominance affect directional selection? 

Note that p will not equal one in a finite number of generations. As p gets 
closer to one, A s p  approaches zero fast enough to prevent p = 1 in finite time. 
However, in finite populations genetic drift dominates selection when p gets very 
close to one and will thus cause fixations to occur in finite time. 
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Problem 3.5 Write  down Equation 3.2 for the  specid case h = 1/2. Find  the 
allele frequencies in two  successive generations when the  initid d u e  ofp is 0.1 
and B = 0.1. If you can program a computer, continue this for 200 generations 
and  graph  the  result. 

The decrease in the frequency of the medionigra allele in Panaxia from 
1939 until about 1955 may well be due to directional selection. If the selection 
coefficient for the rnedionigm allele  were S = 0.1, the heterozygous effect h = 
1/2, and  the initial frequency q = 0.1, then the allele frequency trajectory 
obtained from Equation 3.2 fits the observed allele frequency quite well, as 
illustrated in Figure 3.1. Does this  constitute a “proof” that direction selection 
is responsible for the allele frequency change? Unfortunately, no. Many different 
forms of selection have trajectories that fit the  data  as well as does directional 
selection. A convincing demonstration that directional selection is operating 
requires direct measurements of the selection  coefficient to show that 0 < S < 1 
and of the heterozygous effect to show that 0 < h < 1. The obstacles to 
obtaining these estimates in a natural  setting  are almost insurmountable. Not 
only are  there  the obvious problems of determining the viability, fertility, mating 
success, longevity, and so on of genotypes with sufficient accuracy, there is also 
the problem of demonstrating that  the measured parameters are due to alleles 
at the medionigm locus and not to those at some  closely linked locus. A good 
introduction to  the problems of measuring selection in nature is John Endler’s 
book, Natural  Selection  in  the Wild (1986). 

The entire history of the medionigm allele  is a mystery. The allele is found 
only in the Oxford population, where it  appears to have been at a selective 
disadvantage from at least 1939 to 1955. If it were  always at a disadvantage, 
then why  was its frequency as high as 10 percent in 1939? An obvious answer, 
one that fits with the  standard Darwinian view  of the world, is that  the envi- 
ronment has changed. The fitness of a genotype is determined by its  adaptation 
to  the environment i,n  which it finds itself. Even a casual observer notices that 
environments are  constantly changing. The physical environment changes on 
many different time scales  from seconds to million of years. There  are daily 
and seasonal temperature cycles;  ice  ages are  temperature cycles with a period 
of tens of thousands of years. Continental drift causes major climatic changes 
on even longer time scales. More subtle  are the changes in the biological  envi- 
ronment. Most creatures  are  both  predator  and prey; all, save perhaps viruses, 
are attacked by pathogens. These components of the biological environment 
are  just  as variable as  the physical environment, perhaps even more so. Our 
picture of evolution should never be one of constant improvement in a static 
environment, but  rather a desperate evolutionary race to avoid extinction in a 
constantly  deteriorating environment. With  this view, it is perfectly natural to 
assume that medionigra was more fit in the Oxford environment at some time 
prior to 1939 and less fit after 1939. Of course, we have no way to reconstruct 
history to find out if this is so. Nor can we rule out such possibilities as a 
sudden increase in the mutation rate due a transposable element or some other 
unorthodox mutational event. 
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Figure 3.4: Properties of balancing  selection  with h = -0.5 and 8 = 0.1. 

The second type of selection occurs when there is overdominance (h  c 0). 
In this case, the allele frequency approaches an equilibrium value, p + S ,  as 
is readily inferred from the  graph of A s p  versus p illustrated in the left-hand 
frame of Figure 3.4. When p is  close to zero, A s p  > 0 and  the allele frequency 
will increase. When p is  close to one, A s p  < 0 and p will decrease. Therefore, 
p must approach an equilibrium that is  between zero and one. The equilibrium 
is that point where the allele frequency no longer changes, A s p  = 0. From 
Equation 3.2, we see that this occurs when 

ah + (1 -$)(l - h) = 0 ,  

or 

h - l  S = -  
2h - 1' 

As both alleles are kept in the population in a balanced or stable equilibrium, 
this form of selection is  called balancing selection. 

As a technical aside, the  method used to determine the existence of an 
internal equilibrium is  called end-point analysis. This technique is  very  useful 
for describing the qualitative behavior of complicated dynamical models  when 
the global behavior is too difficult to understand. End-point analysis could have 
been  used  for directional selection as well. There,  the allele frequency increases 
when both  rare  and common, suggesting that p = 1 is a stable equilibrium and 
p = 0 is an unstable equilibrium. 

Problem 3.6 Graph S tls a function of h for -1 < h < 2. Locate the regions 
of the  graph  that correspond to incomplete dominance and overdominance, and 
discuss the values of S in these two  regions. 
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The most thoroughly studied example of overdominance is the sickle-cell 
hemoglobin polymorphism found in many human populations in Africa. Hemo- 
globin, the oxygen-carrying red protein found in red blood cells, is a  tetramer 
composed of two alpha chains and two beta chains. In  native West and  Central 
African populations, the S allele of beta hemoglobin reaches a frequency as high 
as 0.3 in some areas. The more common A allele  is found at very  high frequency 
in most other  areas of the world. The two  alleles  differ  only  in that  the S allele 
has  a glutamic acid at its  sixth amino position while the A allele has  a valine. 
The glutamic acid causes the hemoglobin to form crystal aggregates under low 
partial pressures of oxygen, as occur, for example, in the capillaries. As a result, 
SS homozygotes suffer  from  sickle-cell anemia, a disease that is often fatal. 

The S allele could not have reached a frequency of 0.3 unless AS heterozy- 
gotes are more fit than A A  homozygotes. This is  precisely the case in regions 
where malaria is endemic, for there the heterozygotes are somewhat resistant 
to severe forms of malaria. The resistance is due to  the sickling phenomena, 
which makes red blood cells  less suitable for Plasmodium falcipamm. In an 
old study from 1961, it was  shown that  the viability of AS relative to AA is 
1.176 in regions with malaria. Assuming that the fitness of SS is zero (S = l), 
h = -0.176. Plugging this  into  Equation 3.4  gives f i  = 0.87 or rj  = 0.13 for the 
S allele, which  is nestled right in the middle of allele frequencies in regions with 
endemic malaria. 

The complete story of selection on beta hemoglobin variation is more com- 
plicated than  the bit presented here. A very readable, though somewhat dated, 
account may be found in The Genetics of Human Populations by Lucca Cavalli- 
Sforza and Walter Bodmer (1971). Even our abbreviated account emphasizes 
once again that selection occurs in an environment that is  always changing. The 
relevant environment for the sickle-cell polymorphism is the biological environ- 
ment embodied in falciparum malaria.  Populations of Plasmodium fluctuate 
in both  time  and space with consequent changes in the fitnesses of the  beta 
hemoglobin genotypes. In areas without malaria, the form of selection shifts 
from balancing selection to directional selection. 

The final form of selection, disruptive selection, occurs when there is under- 
dominance ( h  > 1). A graph of Asp versus p in this case shows that p will 
decrease when rare  and increase when near one. (You will be asked to draw this 
graph in Problem 3.7) That’s  strange: The outcome of selection depends on the 
initial frequency of the allele! In fact,  the allele frequency will approach zero 
if the initial value of p is  less than p ,  where f i  is  given  by Equation 3.4. The 
allele frequency will approach one if the initial value of p is greater than p .  If, 
by some bizarre chance, p = f i ,  the allele frequency will not change at all. f i  is 
an unstable equilibrium because the smallest change in p will cause the allele 
frequency to move away from fi. A small change in p might well be caused by 
genetic drift. 

Problem 3.7 Graph A,p versus p for an underdominant locus. Use the figure 
to convince yourself that  the description of disruptive selection given in  the 
preceding paragraph is correct. 
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There  are very  few, if any, examples of underdominant alleles ‘in high fre- 
quency  in natural populations. However, the fact that closely related species 
sometimes have  chromosomes that differ by inversions  or translocations suggests 
that underdominant chromosomal mutations do occasionally cross the unstable 
equilibrium. The evolutionary forces that push the frequencies  over the unstable 
point are  not known, although both genetic drift and meiotic drive are likely 
candidates. 

There is something unsatisfying about  the description of the  three forms of 
natural selection. They come off as a series of disconnected cases. One might 
have  hoped  for  some  unifying principle that would  make  all three cases appear 
as instances of some more general dynamic. In fact, Sewall Wright found unity 
when  he wrote Formula 3.2 in the more provocative form 

PP 
2tij d p ’  

A s p  = -- 

(The symbol &/dp  is the derivative or slope of the mean fitness viewed as a 
function of the allele frequency p , )  Equation 3.5 shows that A s p  is proportional 
to  the slope of the mean fitness function. If the slope is positive, then so is A s p .  
As a result, selection will increase p and, because d u / d p  > 0, will increase the 
mean fitness of the population. If the slope is negative, p will decrease and, 
because dtijldp < 0, the mean fitness will increase once again. In  other words, 
the allele frequency always changes in such a way that  the mean fitness of the 
population increases. Moreover, the  rate of change in p is proportional to  the 
genetic variation in the population as measured by pq.  Although we will not 
show it,  the  rate of change of the mean fitness, tij, is proportional to pq  as well. 
Thus, selection always increases the mean fitness of the population and does so 
at a rate  that is proportional to  the genetic variation. 

R. A. Fisher made a similar observation at about  the same time  as did 
Wright and called it  the Fundamental Theorem of Natural Selection (Fisher 
1958). Fisher showed that  the change in the mean fitness is proportional to  the 
additive genetic variation in fitness. (We  will learn about  the  additive variance 
in Chapter 5 . )  As variances are always positive, the mean fitness will always 
increase when natural selection changes the allele  frequency. 

The Fundamental Theorem of Natural Selection  is undeniably true for theo- 
retical populations with simple selection at a single locus. However, with more 
loci or if fitness depends on the frequencies of genotypes or if it changes through 
time, the Fundamental Theorem no  longer holds. Thus,  it is neither funda- 
mental nor a  theorem; some  have  claimed that  it has little to do with natural 
selection. Its biological  significance has always  been controversial. Yet, the 
metaphor suggested by the theorem that  natural selection always  moves popu- 
lations upward on the  “adaptive landscape’’ has proven to be a convenient one 
for simple descriptions of evolution without mathematics or deep understand- 
ing. The metaphor is stretched  too  far when applied to evolution for  more than 
a few generations, as the change in fitness due to environmental change renders 
the metaphor  inappropriate. Imagine climbing a mountain that keeps moving; 
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despite your best efforts, the peak remains about  the same  distance  ahead. That 
is the proper metaphor for evolution. 

Problem 3.8 Graph  the mean fitness of the  population as a function of p for 
S = 0.1 and h = -0.5, 0.5, and 1.5. Do the  peaks correspond to  the outcomes 
of selection described above? 

3.4 Mutation-selection balance 

The vast majority of mutations of large effect are deleterious and incompletely 
dominant.  They  enter the population by mutation  and are removed  by  direc- 
tional selection. A balance is reached where the  rate of introduction of mutations 
is exactly matched by their rate of loss due to selection. The equilibrium number 
of deleterious mutations is large enough to have a major effect on many evolu- 
tionary processes. Among these are  the evolution of sex and recombination and 
the avoidance of inbreeding. Most of these mutations  are  partially recessive, 
h < 1/2, so their effects are not always apparent unless the population is made 
homozygous either by genetic drift or by inbreeding. In this  section, we  will 
study the balance between mutation  and selection and  then go  on in the next 
section to describe the dominance relationships between naturally occurring al- 
leles. 

Following our labeling conventions, A2 will represent the deleterious allele 
whose frequency is increased by mutation  and decreased by directional selection. 
Selection will be assumed to be sufficiently strong so that  the frequency of A2 
is  very small. As a consequence, the most important effect of mutation is to 
convert A1 alleles into A2 alleles. The reverse happens as well, but has little 
influence  on the dynamics and can be ignored. Suppose, therefore, that there 
is  one-way mutation from  allele A1 to allele A2, 

A1 4 A2, 

where U is the mutation  rate, the probability that a mutation from A1 to A2 
appears in a gamete. 

The effects of mutation on p may be described in the same way as was done 
in the discussion of the balance between mutation and genetic drift. For an 
allele  in the next generation to be A I ,  it  must have been A1 in the current 
generation and  it must not have mutated, 

p' = p(l - U ) .  

The change in p in a single generation is 

Aup = -UP. (3.6) 

Mutation  rates  are usually very small: for  visible mutations at a typical 
locus in Drosophila to for a typical nucleotide. Thus,  the frequency of 
AI decreases very  slowly  while the frequency of A2 increases very  slowly. If 
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selection against A2 is  sufficiently strong,  it will  keep the frequency of A2 very 
low,  allowing the approximation 

Aup = -U + qu m -U, (3.7) 

because q m 0. 

Problem 3.9 Follow the exact and approximate frequencies of the A2 allele for 
two generations when the  initial frequency of A2 is zero and U = What 
is the relative error  introduced by the approximation 3.7? (The relative error  is 
the difference  between the exact and approximate values divided by the exact 
value.) 

From Equation 3.2, we can write the change in the frequency of A1 due to 
selection acting in isolation, when q m 0, as 

The approximation is  valid  when Q m 0, which  implies that p M 1 and tD m 1. 

the change due to selection, 
At equilibrium, the change in the frequency of A1 by mutation must balance 

0 = Aup + A s p  
W -U + qhe, 

which  gives the equilibrium frequency of Az, 

The equilibrium frequency of a deleterious allele  is approximately equal to  the 
mutation rate  to  the allele divided by the selection against the allele in heterozy- 
gotes. Recall  from Chapter 1 that  rare alleles are found mainly in heterozygotes, 
not homozygotes. Thus,  it is not surprising that  the equilibrium frequency of 
deleterious alleles depends on their fitness in heterozygotes rather  than homozy- 
gotes. 

Deleterious alleles cause problems for populations. One measure of these 
problems  is the genetic load of the population, 

L =  Wmax - tB (3.10) 

where wmax is the fitness of the maximally fit genotype in the population. The 
closer the mean fitness of the population is to  the fitness of the most fit genotype, 
the less  is the genetic load. 

The mean fitness of a population at equilibrium under the mutation-selection 
balance is 

wmax ’ 

tij = 1 - 2@4hs - 4’s 

M 1 - 24hs 
M 1 - 2u. 
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Remarkably, the presence of deleterious mutations decreases the mean fitness by 
an  amount, 2u, that is independent of the  strength of selection in heterozygotes. 
The genetic load in this case is simply 

L =  = 2u, 
1 - (1 - 2u) 

1 
(3.11) 

which  follows from Equation 3.10 with wmax = 1. When selection is weak, the 
frequency of the deleterious allele will be higher, but the detrimental effect of 
each allele on the mean fitness of the population is slight. When selection is 
strong,  the frequency of A2 is less, but the effect  is greater. Hence, the indepen- 
dence of the load on the  strength of selection follows. The biological  significance 
of genetic load, like that of the Fundamental Theorem of Natural Selection, has 
been hotly debated over the years. Load  is most useful  when discussing deleteri- 
ous alleles of measurable effect but is  of dubious value  for variation maintained 
by balancing selection or  for directional selection of advantageous alleles. 

Problem 3.10 Derive the genetic load for m overdominant locus at  equilibrium. 
(Do not include mutation.) Is this  greater or less than  the  load of a population 
made up entirely of AlAl individuals (and for which the A2 allele does not 
exist, even as a possibility)? What are  the implications of your answers on the 
biological significance of genetic loads? 

3.5 The heterozygous effects of alleles 

In 1960, Rayla Greenberg and James F. Crow published a landmark  paper 
reporting the results of a study  “undertaken in an attempt  to determine whether 
the effects of recurrent mutation on the population and  the deleterious effects of 
inbreeding are due primarily to a small number of genes  of major  effect or to  the 
cumulative activity of a number of genes with individually small effects.” The 
study did this  and considerably more. Of particular  interest was its suggestion 
that mutations of large effect are almost recessive (S M 1 and h M 0) while those 
of small effect are almost additive (S M 0 and h M 1/2). The prevailing view 
in the  late 1950s was that most deleterious mutations  are completely recessive 
(h  = 0). This paper is not only historically and scientifically important,  but also 
pedagogically valuable because it uses many of the ideas developed in this  and 
the previous chapters.  In  addition,  it introduces an experimental methodology 
that is central to population genetics. 

The design of the experimental part of the Greenberg and Crow paper was 
developed in the  late 1930s by  Alfred Sturtevant  and Theodosius Dobzhansky. 
Back then, most of the genetic variation affecting fitness was thought to be due 
to rare, recessive, deleterious alleles. As rare alleles are usually heterozygous, 
these  mutations would not be expressed in wild-caught individuals. An  obvi- 
ous way to study  this “hidden variation” is to make individuals homozygous, 
as  this allows the expression of recessive mutations. Drosophila was the only 
suitable organism for such a study because it alone allowed the experimental 
manipulation of entire chromosomes  on  which recombination is suppressed, 
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F1 : Cy/+n x Cy/bwD 
I from line n + 1 

F3 : +n/+n Cy/+, +n/+n+l Cy/+n 
burD/+, h D / + n + l  

Inbred  Control  Outbred  Control 
25%  50% 25% 50% 

Figure 3.5: The Drosophila rnelanogaster crosses  used to uncover  hidden  variation. In 
each  cross, the male  is on the left. 

The experimental design  is illustrated in Figure 3.5. The purpose of the 
design  is to  construct flies that  are homozygous  for their  entire second chro- 
mosomes. The viabilities of these flies are  then  compared  to those whose  two 
second  chromosomes are drawn  independently  from nature,  thus mimicking ran- 
dom mating. The first class of flies  will be called inbred,  and  the second class 
will be  called outbred.’ The  details of the design are as follows: 

P1 In the  parental generation, +n/+L represents one  male fly, obtained  from 
nature or from an experimental population, that  initiates  the  nth line of 
crosses. The symbols +n and +L stand for the two  second chromosomes 
found in the male fly. One of the second  chromosomes of this fly will 
ultimately be made homozygous. As there is  no recombination in male 
Drosophila, the chromosomes in this original male  remain intact.  The male 
is  crossed to a Cy/cn bw female. Cy is a dominant second chromosome 
mutation, Curly wing, that is  placed  on a chromosome with  one  paracen- 
tric inversion on each arm  to block recombination. The  other chromosome 
has two  recessive mutations,  cinnabar eyes (cn) and brown  eyes (bw). This 
initial cross  is repeated 465 times, each repetition using an  independently 
obtained male. Each  repetition is  called a line; the lines are  numbered 
sequentially from 1 to 465. 

Fl A single Cy/fn male from each line is  crossed to a Cy/bwD female. The 
female Cy chromosome  in this  step is a slightly fancier version of the 
previous Cy chromosome,  with  a pericentric inversion, SM1, providing 
extra safeguards against recombination. The homolog to Cy in the female 
contains a dominant brown-eye mutation, bwD. This ib the critical step in 

* Greenberg and Crow called members of these two classes homozygotes and heterozygotes, 
respectively. However, while homozygotes is &curate for the first class, the loci of the second 
class can be either homozygous or heterozygous at each locus as they are in Hardy-Weinberg 
proportions. 

, , , . . .  , .. . . .  . .... . .., ,,.,.,. .. .,, , , , , ”  .,. ... <“, ,. .,,. - ,.I/.j..”.. j. I .  . .  ., . . .. .,/. ,. .,/,...,_,. ... , . 
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the design as  it assures that only a single  wild-caught  second chromosome 
is used. 

F2 Two different  crosses occur in this generation. The first is a mating of a 
a bwD/+, male to a Cy/+, female from the same line (a brother-sister 
mating). The second  is a cross of a burD/+, male to a Cy/+,+l female 
from the (n + 1)st line. 

F3 The offspring  from the brother-sister F2 cross will fall into four classes: 
+n/+n, Cy/+nl bwD/+,, and Cy/bwD, which are easily recognized  be- 
cause Cy and bwD are  both dominant mutations. According to Mendel’s 
law of segregation, these four classes should be equally frequent. However, 
as the Cy/bwD flies are  not used in the analysis, they  are  not included 
in Figure 3.5. The +n/+n flies are homozygous at every locus on their 
second  chromosome and for this reason are called inbreds. The offspring 
from the interline cross have the same phenotypic classes as  those from 
the intraline cross, but  the wild-type flies  will contain two independently 
derived second  chromosomes. They are formally the same as flies pro- 
duced by random  mating from the original population, so they  are called 
outbreds. 

The Cy/+, and burD/+, flies,  called controls in the figure, are  not inbred 
and  are relatively vigorous. They  are used as a reference  for determining the 
relative viability of the +n/+n flies according to  the formula 

+,/, +, viability = 
2 x number of +n/+, flies 

numbers of CY/+, and burD/+, flies‘ 

The determination of the viability of outbred flies  is done in a similar fashion. 
Figure 3.6 illustrates the number of lines in each relative viabilities class 

among the inbred and  outbred flies obtained after carrying out  the crosses in 
Figure 3.5. Viability class 0 is made up of all lines with relative viability in the 
interval 0 5 v < 0.1, class 0.1 includes those in the range 0.1 5 v < 0.2, and 
so forth.  The most striking aspect of the figure  is the bimodal distribution of 
viabilities in the inbred flies. The left  mode  is due to “recessive” lethal  mutations 
found on 106 of the 465 chromosomes examined. In other words, about 23 
percent of all second  chromosomes carry at least one mutation that is lethal 
in the homozygous state. As a single second  chromosome represents about 20 
percent of the  total genes in Drosophila, it follows that most individuals carry at 
least one lethal  mutation. Drosophila is not unusual in this  regard. Most diploid 
organisms, including ourselves, carry a similar number of lethal  mutations. 

Problem 3.11 Assuming that a single second chromosome contains 20 percent 
of the loci, calculate the  probability that an individual will  be completely free 
of lethal  mutations. 

The graphed viabilities of inbred flies dips into a deep valley separating 
a left-hand lethal peak from the much broader right-hand deleterious peak. 
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Outbreds + 
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Figure 3.6: The numbers of lines  in each viability class among the inbred and  outbred 
flies in the Greenberg and Crow experiment. 

The mode of the deleterious peak lies a bit to  the left of the mode of the 
outbred flies. Thus, flies  homozygous  for their second  chromosomes  do not  fare 
as well as  outbred flies,  even if their second  chromosomes are free of lethal 
mutations. Being  homozygous at all loci  is clearly bad;  this is an example of a 
more general phenomenon called inbreeding depression, which  could  be  defined 
as the reduction in mean fitness due to increased homozygosity. 

At this  point,  it might seem that we have in hand some  evidence on the 
value of the heterozygous effect, h, for the hidden variation uncovered in this 
experiment. Perhaps the observation that inbreds are less viable than outbreds 
implies that overdominance is the prevalent form of dominance. While plau- 
sible, inbreeding depression does not allow this conclusion, as may be shown 
by considering the contribution of a single  second-chromosome locus to viabil- 
ity. The fitnesses and frequencies of the genotypes at this locus in inbred and 
outbred flies of the Greenberg and Crow experiment are  as follows: 

Genotype: AlAl AlA2 AzA2 
Relative fitness: 1 1 - h s  1 - 8  
Inbred frequencies: P 0 Q 
Outbred frequencies: p2 2pq q2 

The experiment tells us that  the mean fitness of the inbred flies  is  less than 
that of the outbred flies. What does this say about  the values of S and h in the 
table? 

The mean viability of the inbred flies  is 

( p  x 1) + [q x (1 - s)] = 1 - qs. 

The mean viability of the outbred flies  is just  the mean fitness of a randomly 
mating population,  as given in Equation 3.3. If the outbreds are more viable 
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than  the inbreds, 

1 - 2pqhs - Q28 > 1 - qs (3.12) 

In sequence, cancel the ones, cancel qs, move q to  the right side of the inequality, 
and clean up  to get 

(3.13) 

Thus, inbreeding depression implies that h is  less than one-half. Recalling that 
in the s-h parameter system the AI AI  genotype is  always more fit than AzA2, 
we can conclude that inbreeding depression implies that  the fitness of the het- 
erozygote is, on average, closer to  that of the more fit homozygote. Recessive 
deleterious mutations have this property, as do overdominant mutations. While 
intuition may  have suggested that inbreeding depression implies overdominance, 
we  now  see that  it only limits the heterozygous effect to being less than one-half. 
Of course, this is a tremendous step forward in our quest to learn more about 
the alleles responsible for genetic variation in fitness. Already we can pay less 
attention  to underdominant and recessive advantageous mutation  and focus on 
those mutations with h < 1/2. 

The next  step in Greenberg and Crow’s analysis is an indirect but brilliant 
inference about  the relationship between h and S, which begins with some  for- 
mulae that relate the mean relative viabilities of flies to  the frequencies and 
effects of deleterious mutations.  Three viability estimates  are required: 

A The average relative viability of outbred flies.  From Figure 3.6 we have 
A = 1.008. 

B The average relative viability of inbred flies: B = 0.632. When other  studies 
are included, B is found to lie  between  0.614 and 0.656. 

C The average relative viability of inbred flies without lethal  mutations on their 
second  chromosomes: C = 0.842.  Among all such studies, C ranges from 
0.829 to 0.860. 

Each second  chromosome  is imagined to have an unknown number, n, of loci 
that are capable of mutating to deleterious and  lethal alleles. The frequency 
of the deleterious allele at  the  ith locus  is  called qi and  its selection coefficient, 
which  is thought  to be small, si. Similarly, the frequency of the lethal  mutation 
at the  ith locus  is  called Qi and  its selection coefficient,  which  is  close to one, 
Si. Inbred flies  have  lower viabilities than outbred flies because they  are more 
likely to carry one  or more of these  mutations in the homozygous state.  The 
probability that a  particular inbred fly is  homozygous  for a deleterious allele at 
the i locus is q i .  The probability that it dies  from this allele, given that  it is 
homozygous, is si. The probability that  it is both homozygous and dies  is qisi. 
Finally, the probability that  it survives is 1 - qisi. The  situation at a typical 
locus, the  ith locus, is illustrated in Figure 3.7. 
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ith locus 
m 
I I  r ]  3 

Genotype Probability Selection  Coefficient 
A1 A1 1 - qi - Qa 0 

Figure 3.7: The possible states of a typical  locus  in an inbred  fly. A superscript d on 
an  allele indicates that it is  a  deleterious mutant. A superscript l identifies  a lethal 
mutant. 

If-and this is a big  ‘if’-the  loci act independently in their effects  on the 
probability of survival, the probability that a  particular inbred fly survives to 
adulthood is 

(3.14) 

The factor A represents the probability of survival for an outbred fly. Inbreds 
may  die  for  all of the various reasons that outbreds may die, plus  some more, 
which are  captured in the product  term. Using Equation A.4, Equation 3.14 
may be approximated by 

B = (3.15) 

where D = C qisi is  called the detrimental load and L = C QiSi is  called the 
lethal load. These loads differ  from the genetic load described in the previous 
section in that they describe the fitness reduction in inbred rather  than  outbred 
flies. 

By taking the  natural logarithm of both sides of Equation 3.15 and  rear- 
ranging, we obtain 

D + L  = ln(A) - ln(B) 
= ln(1.008) - ln(0.632) 
= 0.4668,  (3.16) 

which relates the estimates of relative viabilities from Figure 3.6 to  the param- 
eters of deleterious alleles. D itself  may be obtained from 
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by taking logarithms of both sides and  rearranging to obtain 

D = ln(A) - ln(C) = 0.1799. 

This result may be combined with Equation 3.16 to get 

L = ln(C) - ln(B) = 0.2868. 

The final quantity of interest, the D : L’ratio, is 

(3.17) 

This concludes the association of estimated values from the experiment to pa- 
rameters from the population. The next  task is to interpret the result. 

In  the  late 1950s, most population geneticists believed that  the majority 
of mutations in natural populations are deleterious with similar, and small, 
heterozygous effects. Greenberg and Crow claimed that this view  was not com- 
patible with a D : L  ratio of 0.627 by the following argument. Using Formula 3.9 
for the equilibrium values of q, and Q1 and canceling the selection coefficients, 
Equation 3.17 becomes 

where ui and Ui are  the  mutation  rates to deleterious and  lethal  mutations 
at the  ith locus, respectively. The hypothesis of similar heterozygous effects, 
h .R hi H,, allows the final cancelation of the heterozygous effects. Under 
this hypothesis, the D : L ratio is equal to  the  ratio of the  total deleterious 
mutation  rate  to  the  total lethal  mutation  rate. These rates may be estimated 
in the laboratory  and  their  ratio, circa 1960, was  known to be between 2 and 3. 
Spontaneous deleterious mutations  are two to three times more likely to have a 
small effect than  to be lethal. Thus,  the hypothesis of equal heterozygous effects 
must be rejected because of the small value of the D : L ratio. 

Greenberg and Crow suggested an alternative hypothesis: Suppose there is 
an inverse relationship between h and S. For example, suppose hs is constant 
across mutations. In this case, 

because, by assumption, his, W H&. Now the D : L ratio is the  ratio of 
quantities that  are sums of selection coefficients  weighted by their  mutation 
rates. These quantities may also be estimated in the laboratory,  and the  ratio 
turns out to be 0.711, remarkably close to 0.627, thus giving support  to  the 
hypothesis of an inverse homozygous-heterozygous effect. 

Greenberg and Crow  go  on to consider a few other hypotheses but finally 
return to this one and with it  their suggestion that there is an “inverse hetero- 
zygous-homozygous  effect”  for deleterious mutations uncovered by inbreeding. 
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Figure 3.8: Sewall Wright’s model of dominance  applied to viability. 

Mutations of large effect, like lethals,  are almost recessive (h  M 0); alleles of 
small effect have a much greater heterozygous effect, perhaps close to one-half, 
but not greater than one-half because of inbreeding depression. 

The inverse heterozygous-homozygous effect  is not an isolated phenomenon. 
Rather,  it is an  instance of a more general framework whose origins may be 
traced to  the 1920s and the first efforts to understand the dominance rela- 
tionships between alleles affecting phenotypes. Some  visible phenotypes also 
exhibit an inverse homozygous-heterozygous effect, the most celebrated being 
the white-eye mutants in Drosophila. 

Sewall Wright, among others,  created a model to explain the inverse effect 
that used well-established properties of enzyme pathways (Wright 1929, 1934). 
The model  is of a locus whose product,  an enzyme, catalyzes one step in a crit- 
ical enzyme pathway. The  most,  important property of the model is illustrated 
in Figure 3.8. The horizontal axis is the activity of the enzyme in units cho- 
sen so that  an activity of one is “normal.” The vertical axis is the fitness of 
the genotype as a function of its enzyme activity. (In the original formulation 
the vertical axis was a quantitative measure of the phenotype.) If there is no 
activity, the pathway does not function and  the fitness is zero. As the activ- 
ity increases, there is a rapid increase in fitness because the pathway can now 
produce its  product.  With  further increases in activity, the pathway begins to 
function normally and  the augmentation of fitness decreases. There is a “law 
of diminishing returns” as enzyme activity approaches normal levels. It is fairly 
well established that most enzymes have such high activities that a reduction 
in activity of one-half has only a small effect on the functioning of the pathway. 
The figure is drawn to reflect this. 

In Wright’s model, a lethal  mutation is one that produces a defective enzyme 
with no activity. In  the context of our two-allele model, the AzA2 homozygote 
has no activity  and dies. The A1 A I  homozygote produces normal enzymes and 
has  a scaled activity of one. The activity of the AlA2 heterozygote is one-half 
that of a normal homozygote because it contains one allele making a normal 
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enzyme and one making a defective  enzyme. Its scaled activity is 1/2, yet its 
fitness is  close to  that of A1 Al. In this case, we have S = 1 and h close to zero. 

A deleterious mutation of small effect  will be one whose enzyme activity is 
only slightly less than  the normal activity. Again, the heterozygote’s activity will 
be halfway  between the normal activity  and the  mutant homozygote activity. 
The fitness of the heterozygote, however,  will be only slightly less than halfway 
between that of the two  homozygotes because of the concave form of the fitness 
function. In  this case, we have S close to zero and h close to one-half.  Hence, 
the inverse  homozygous-heterozygous  effect of the Greenberg-Crow experiment. 

For example, the function illustrated in Figure 3.8 is 

(1 + a)x 
W(X) = - a + x  ’ 

with a = 0.06. When A2 is a lethal  mutation, we have 

W11 = w(1) = 1 

W22 = w(0) = 0. 
~ 1 2  = ~ ( 1 / 2 )  = 0.946 

From these we get S = 1 and h = 0.053, which represent a high degree of 
dominance for the A1 allele. If A2 is  only slightly deleterious, with an enzyme 
activity of 0.99, then 

W11 = w(1) = 1 
~ 1 2  = ~ ( 0 . 9 9 5 )  = 0.9997 
~ 2 2  = ~ ( 0 . 9 9 )  = 0.9994, 

which  gives S = 5.7 x and h = 0.4976. The alleles in this case have a very 
small homozygous  effect and  are very nearly additive. 

Wright’s model of dominance gives a biological context for Greenberg and 
Crow’s  inverse  homozygous-heterozygous  effect. Without it, we have a couple 
of apparently contradictory observations about the dominance relationships be- 
tween alleles of large and small effects. With it, an appropriate response to  the 
Greenberg and Crow experiment would be: How could it be otherwise? Ironi- 
cally, the realization that Wright’s model  is relevant to  the inverse  homozygous- 
heterozygous effect has come  only recently. 

Problem 3.12 The fitness function in Figure 3.8 w m  drawn using the function 
(1 + a)x/(a + x) to  match  the  results of the  Greenberg-Crow experiment. Use 
this function to find h as a function of S. Plot this function to  illustrate  the 
inverse homozygous-heterozygous  effect. 

There is  no room in our functional view of dominance for overdominance. 
Wright’s model, in  particular, allows  only incomplete dominance. The com- 
pelling biological appeal of  his  model suggests that overdominance, when it 
exists, must be due to unusual circumstances. The sickle-cell polymorphism is 
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an example: Overdominance results from the interaction of the solubility of a 
globin mutation  and  the growth requirements of a protozoan.  This very peculiar 
situation would probably  not generalize to a sizeable fraction of loci. 

The analysis of the Greenberg and Crow experimental  results may strike 
some as  unacceptably abstract because it gives no examples of deleterious al- 
leles of small effect. Of course, in  1960 there were no molecular techniques to 
allow this. Today, such techniques are available and so are some examples of 
mutations that could plausibly contribute to Greenberg and Crow’s detrimental 
class.  Null alleles, alleles at enzyme-encoding loci that lack measurable activity, 
are  the best-known group of putative deleterious mutations.  In a large study of 
null  alleles in Drosophila populations, Chuck Langley, Bob Voelker, and  their 
colleagues  (Voelker et al. 1980;  Langley et al. 1981) estimated that  the average 
frequency of null alleles  is Q = 0.0025. Previously, Terumi Mukai and  Clark 
Cockerham (Mukai and Cockerham 1977) had estimated the average mutation 
rate  to null alleles to be 0 = 3.86 x If the nulls are deleterious and  the 
population is at equilibrium, Equation 3.9 gives 

Surprisingly, all but 1 of the  the 20 autosomal null alleles  showed no obvious 
deleterious effects  when  homozygous  in the laboratory, so these 19 do not con- 
tribute to  the lethal class of the Greenberg and Crow experiment. No effort was 
made to estimate  the relative fitnesses of the nulls as homozygotes or heterozy- 
gotes, so we cannot say what  their heterozygous effects are. These estimates 
will probably never be  made because measuring fitness differences as small as 

The main insights of the Greenberg-Crow experiments have withstood the 
tests of time remarkably well. In a monumental experiment, Terumi Mukai 
measured viability effects of newly arising mutations  and directly confirmed the 
existence of the inverse homozygous-heterozygous effect (Mukai et al. 1972). 
Mukai also looked at viability variation in natural  populations  and found no 
evidence for overdominance, thus  supporting  our view that overdominance is 
not a common phenomenon. The  ratio of deleterious to lethal  mutation  rates is 
now thought to be closer to 10 than  to 2 to 3 as used by Greenberg and Crow. 
The paper by  Mike Simmons and  James Crow  (1977) contains a good summary 
of these more recent results. 

is impractical, if not impossible. 

Problem 3.13 How much more likely is a Drosophila in nature  to die from a 
deleterious mutation  rather than a lethal  mutation? How much more likely is 
one to die from being heterozygous for a deleterious mutation  than homozygous? 

3.6 Changing environments 

Greenberg and Crow and subsequent workers have shown that alleles with very 
small effects on viability are close to additive. Many of these alleles in natural 
populations  are  undoubtedly  maintained by mutation-selection balance; others 
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could be maintained by balancing selection. However, our theoretical investi- 
gations of natural selection  showed that balancing selection occurs only  when 
there is overdominance, h < 0. If all of the experimental work, except for a few 
examples of strong selection like the sickle-cell polymorphism, argues against 
overdominance, it would be rather silly to suggest that balancing selection is 
an  important  contributor to genetic variation in fitness. Or would it?  Perhaps 
there  are  situations where balancing selection can occur without overdominance. 

Two of our examples of selection suggest such a  situation, that of selection 
in a changing environment. In Panaxia, the fitness of the medionigra allele 
must have changed from advantageous to disadvantageous at least once in the 
recent past.  In  addition to this  temporal variation in fitness, there  must also be 
spatial variation in fitness, as medionigra was in moderate frequency only in the 
Oxford population. Similarly, the overdominance of the sickle-cell  allele occurs 
only in  areas with high levels of malaria.  In  other  areas,  there is incomplete 
dominance. As instructive as these examples are, the idea that  the fitness of 
a genotype depends on the environment is so obviously true  that little  in  the 
way of support needs to be mustered. If fitnesses do depend on the  state of 
the environment, as  they surely must,  then  they must just as assuredly change 
in both  time  and  space, driven by temporal  and  spatial  fluctuations in the 
environment. 

Can changing fitnesses in time  and space result in balancing selection without 
overdominance? The answer  is  yes, but  the  route to  the answer is one of the more 
difficult  proofs in theoretical population genetics. While the proof  is  difficult, 
the result is rather intuitive. Imagine that  the fitnesses of the AlAl and A2A2 
homozygotes can be written  as w11 = 1 + si and w22 = 1 - si, where si is a 
selection coefficient  whose  value depends on the  state of the environment in the 
ith habitat. Imagine further that  the fitness of the heterozygote is one, which 
corresponds to h = 1/2. If the environment changes such that si is positive in 
some habitats  and negative in others,  then a balanced polymorphism is possible 
if 'the absolute value of the mean of si across habitats is  less than  the variance 
in si, 

1 q S i ) l  Var{Si). 

That is, if the variance in fitness across habitats is large enough to overcome 
any mean advantage one allele  may  have  over another,  then a balanced poly- 
morphism will occur without overdominance. 

Although the general proof of this result is quite difficult, the core of the 
argument is actually  rather simple and will  be illustrated here with a very 
particular example. The example is of spatial variation in fitness. We imagine a 
simple pattern where, in some parts of a species' range, the AI allele  is favored 
over the Az allele, and in other  parts the opposite. Were there no migration, 
it is clear that  the AI allele  would  fix in those places where it is favored, the 
Az allele  would fix where it is favored, and  the species would be polymorphic 
because of balancing selection without overdominance. We could end here with a 
satisfied grin except for one awkwardness: real species migrate. Migration tends 
to make species genetically more uniform across their range and can promote 
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Figure 3.9: A model of selection in a species  with subpopulations, each of different 
relative size, ci,  and fitness. 

the fixation of an allele that is more fit on average than all others across the 
entire  range of the species. Obviously, we have some work to do; we must 
investigate the conditions that lead to polymorphism when migration occurs 
between subpopulations. 

Consider the model of selection in a spatially  fluctuating environment il- 
lustrated in Figure 3.9. There are n subdivisions in the environment, called 
patches, each of relative size ci, Cci = 1. In each generation,  after selection 
occurs within a patch,  a  fraction m of alleles  from each patch  are exchanged 
at random with alleles from the other  patches. The probability of an exchange 
with a particular  patch is proportional to the relative size of that  patch, Q. The 
fitnesses of the  three genotypes at  the A locus vary across patches. The change 
in pa, the frequency of the A1 allele in  the  ith  patch, will be  written Aepi. The 
frequency of A1 in the  ith patch after a round of selection and  migration is 

n 
p: = (1 - m) (pi hepi) + m C Cj (pj + Aspi) - (3.18) 

j=1 

An  allele within a  patch is from a resident with probability 1 - m and from an 
immigrant with probability m. If it is from an  immigrant,  then the probability 
that  it is A1 is just  the frequency of A1 in the entire species after selection. It 
is as if during each generation all of the  subpopulations  contribute to a “mi- 
grant pool” from which they  then choose  alleles to replace those that emigrated. 
Notice that alleles rather  than genotypes migrate. We obviously  lose some bi- 
ological realism with this  sort of migration, but we gain a great deal in the 
simplicity of the model. Nothing that we say would change significantly were 
we to use a model with individuals migrating. 

Equation 3.18 cannot be analyzed in the same way as the  other models of 
selection because it is  much too complex. However, by examining some special 
cases we  will find out everything we need to know. The first specialization is to 
one of two extreme migration rates, no migration, m = 0, or total migration, 
m = 1; the second is to incomplete dominance, 0 < h C 1. 

For the no-migration case, m = 0, the behavior of the model  is simple: 
fixation will occur in each patch for the favored allele. For those  patches where 
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wll > ~ 2 2 ,  pi = 1, otherwise pi = 0. As the frequency of A1 for the species  is 
the average allele frequency across subpopulations, 

n 

P = c cipi. 
i= 1 

The frequency of A1 is simply the fraction of the entire population for  which A1 
is favored and pi = 1. As long as  both A1 and A2 are each favored in at least 
one patch, the species  will be polymorphic due to balancing selection without 
overdominance. 

The analysis of the  total migration case, m = 1, begins by examining the 
change in the species  allele  frequency, 

n 

P = c CiPi. 
i=l 

Multiply both sides of Equation 3.18  by ci and  add  the n equations to get 
n 

i i i j=1 

or 
P'=P+aeP ,  

where 
n 

ASP = c cj AsPj 
j = 1  

- 

is the average of the changes in pi across patches. The change in p in a single 
generation becomes 

Asp = G. (3.19) 

On the surface, it looks as if  we just made a difficult problem almost trivial. 
Equation 3.19 says that  the change in the species  allele frequency is the average 
of the changes of allele  frequencies  in the subpopulations. And the migration 
rate has totally disappeared! However, we can't know G without knowing all 
of the pi, and  they do depend on the migration rate,'  as seen in Equation 3.18.* 

When there is complete migration, m = 1, then  Equation 3.19 does contain 
all of the information because the allele frequencies in  all of the patches are 
equal at  the  start of each round of selection. Using Equation 3.1, Equation 3.19 
becomes 

*In  mathematical  terms, Equation 3.19 captures  just one dimension of an n-dimensional 
problem. 
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where the superscript i on the fitnesses indicates that  the fitness depends on 
conditions in the  ith patch.  Rather than plowing directly into  this  equation, 
first specialize to the case of additive alleles ( h  = 1/2) and  introduce some 
symmetry by setting wfl = 1 + si, wi2 = 1, and wi2 = 1 - si, giving 

(3.20) 

(In deriving this  equation, use p 2  - q2 = p - q.) 
All that we need  from Equation 3.20 is the answer to our question: Does 

balancing selection occur with incomplete dominance? The easiest route to 
the answer  is to use end-point analysis as we did in the overdominance case. 
First, does p increase when small? When p M 0, the sign of Equation 3.20 is 
determined by 

n 

i=l i=l 

where the approximation comes  from Equation A.7. A1 will increase when rare 
(p M 0) if 

i=1 

which  is the same as 
n n 

i=l i= 1 

The condition that A2 increases when rare is obtained in the same way and is 

i=1 i= 1 

Both conditions will be met when 
I n  I n 

(3.21) 
' li=l I i=l 

which  is a sufficient condition for a polymorphism. (We  have  used the argument 
that, if a and b are  both positive and if both a < b and -a < b, then necessarily 
la1 < b.) If, for example, the absolute value of si is the same in each patch and 
if A1 is favored in precisely  one-half of the patches, then  the left side of the 
polymorphism condition is zero and the right side is greater than zero; hence, 
polymorphism will occur without overdominance. 

As written,  Equation 3.21 is not particularly informative. It can be made 
more so by  recognizing that  the left side is the absolute value of the average 
selective advantage of the A1 allele. If the si are viewed as random quantities  in 
a species with a large number of patches, the notation established in Appendix B 
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may be used to write the average as the expectation of si, E{si}.  The right side 
may be approximated with the variance in si. From Equation  B.2, we know 
that 

E { $ }  = Var{Si} + 
If the mean and  the variance of si are  both very small and of similar orders of 
magnitude,  then the square of the mean will be much smaller than  the variance, 
E { s ~ } ~  << Var{si}, so 

E{s?} M Var(s?). 

Now  we can rewrite Equation 3.21 in the much more suggestive form, 

If the magnitude of the average selective advantage of an allele  is  less than  the 
variance in fitness, polymorphism will occur. Said another way,  if the variance 
in fitness is great enough to overcome the average selective advantage of al- 
leles, polymorphism will occur. The more variable the environment, the more 
polymorphism. 

When more complicated models of selection with incomplete dominance in a 
random environment are examined, the conditions for polymorphism are almost 
always  in a form similar to Equation 3.22. Typically, there is a coefficient  on 
the right hand side that reflects the particular  mixture of temporal  and  spatial 
components of the fluctuations and the dominance relationships between alleles. 

The condition for polymorphism will never be met unless some of the si 
are positive and some negative. This was the only condition required for  poly- 
morphism in the no-migration case, m = 0. While this condition is necessary 
for polymorphism when m = 0 and m = 1, it is  sufficient  only  when m = 0. 
Migration generally makes polymorphism less  likely  when there is incomplete 
dominance because migration averages out the very environmental fluctuations 
that maintain the variation. 

Given the ease with which fluctuating environments maintain variation and 
the fact that temporal fluctuations can cause the fixation of alleles, it is not 
surprising that  the main alternative to the  neutral  theory  as an explanation for 
molecular evolution and polymorphism is  baaed  on selection in a random en- 
vironment (Gillespie 1991). With  fluctuating environments, there is balancing 
selection in nature, yet in the laboratory the experimentalist will  see  incom- 
plete dominance. It could  be that most of the variation that Crow and Green- 
berg called deleterious is maintained by fluctuating environments and should 
be called something else. At the time of this writing, there is no way to know 
whether the “deleterious” load is due mainly to alleles  held in the population 
by mutation-selection balance or by balancing selection. 

Problem 3.14 Imagine a species that lives  in three  subpopulations of relative 
sizes 1/4,  1/2, and 1/4 in which s i  is 0,1,0, and -0.11, respectively.  Will natural 
selection maintain variation in this species? 
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3.7 Selection and drift 

Our discussion of directional selection left the impression that  the most fit al- 
lele eventually reaches a frequency of one. This is true for  alleles of moderate 
frequency but is definitely not true for  alleles with only one or a few copies 
in the population. These alleles are subject to  the vagaries of Mendel’s  law of 
segregation and to demographic stochasticity. It is easy to see that  the fate of 
a single  copy of an allele with, say, a 1 percent advantage is determined mostly 
by chance. If its frequency should become moderate,  then  its average selective 
advantage can overcome the effects of genetic drift. 

The interaction of drift and selection is more complex than  that of mutation 
and drift because the  strength of selection changes with the frequency of the 
allele.  (Recall the factor p q  in Asp or examine Figure 3.3.) Natural selection 
becomes a very  weak  force  for rare alleles, as weak as or weaker than genetic 
drift when  only a few copies of the allele are in the population. For example, 
there is  only one copy of a new mutation, so its frequency when it first enters the 
population is 1/(2N). The  strength of selection in this case  is roughly 1/(2N) 
times S, which  is  less than  the  strength of genetic drift. When the frequency of 
the allele  becomes larger,  then the  strength of selection is determined mainly 
by the selection coefficient, S. If S >> 1/(2N), selection will dominate drift for 
common  alleles. Except for  cases where S W 1/(2N), selection and drift interact 
only in the dynamics of rare alleles. We  will  now describe this  interaction. 

In a finite population, a new advantageous mutation is usually lost because of 
genetic drift.  This surprising result comes from the formula for the probability 
of ultimate fixation of the A1 allele  given its initial frequency, 

(3.23) 

which applies to  the case h = 1/2. (The derivation of Equation 3.23 will be 
postponed until Section 3.8.) The subscript on .rrl(p) is a reminder that  the 
function refers to  the fixation probability of the A1 allele. 

The most important application of Equation 3.23 is  for the fixation proba- 
bility of a new mutation, p = 1/(2N), which  is 

(3.24) 

If S is so small that e-s W 1 - S and if 2Ns  is so large that e”aNs W 0, then 
TI W S. Equation 3.23 is,  for h = 1/2, in which case the selection coefficient 
of the heterozygote is s/2. Thus,  the fixation probability is  twice the selective 
advantage of the heterozygote. This result holds more generally, 

T1 W 2(1 - h)s. (3.25) 

While  proof of this assertion for arbitrary dominance will not be given, it is in 
accord with the general observation that selection on rare alleles depends on the 
fitness of the heterozygote. 
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Equation 3.25 tells us, for example, that a new mutation with a 1 percent 
advantage when heterozygous, hs = 0.01, has only a 2 percent chance of ulti- 
mately fixing in the population. A 1 percent advantage  represents  rather  strong 
selection. In a very large  population, say N = lo6 ,  1 percent selection will  over- 
whelm drift once the allele  is at all common. Yet, 98 percent of such strongly 
selected mutations  are  lost.  Think of all the  great  mutations that failed to get 
by the quagmire of rareness! 

There is a much more important implication of our result. Imagine what 
happens when a species is  challenged by a change in its environment. There 
may be mutations at  many loci  which, if fixed, will handle the new environment 
with a new adaptation. Which of these  mutations gets there  first,  as  it were, 
is determined to a great  extent by chance. Adaptive evolution is, by its very 
nature,  random. Were we to construct two perfect replicates of Earth, each with 
exactly the same species and sequences of environments, the course of evolution 
would be different in the two replicates. Evolution is not  repeatable. 

It is also possible for a deleterious mutation to fix in the population. The 
probability of fixation of the A2 allele,  given an initial frequency q,  is  given by 

For a new mutation, q = 1 / ( 2 N ) ,  and small S we have 

(3.26) 

In very large populations, large enough that 2Ns >> 1, the probability of fixation 
of a deleterious allele  becomes  very small. However,  when 2Ns is  close to or less 
than one, the fixation of deleterious alleles can occur with reasonable probability. 
An unexpected application of this observation is in molecular evolution. 

In Section 2.3, we showed that  the  rate of substitution of neutral alleles, 
k, is the mean number of mutations entering the population each generation, 
2Nu, times the probability of fixation of any one of them, 1/(2N). For selected 
alleles, we need only use r i ( 1 / ( 2 N ) )  for the fixation probability to obtain 

IC = 2Nur41/2N) .   (3 .27)  

For advantageous mutations,  Equation 3.25 shows that 

k = 4 N ~ ( l -  h ) ~ .  

When compared to the  rate of substitution of neutral alleles, k = U, we see 
that selected molecular evolution depends on  all three  parameters of the model, 
rather  than on the mutation rate alone. Many people have used this  contrast 
to argue that selected molecular evolution is not compatible with the molecular 
clock but is compatible with neutral evolution. 

It is also possible that most of molecular evolution involves the fixation of 
deleterious alleles. In this case, using Equation 3.26 in Equation 3.27, we have 

2Nus 
e2Na - 1' (3.28) 
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At first blush, this seems  like a silly idea. How could most of the amino acid 
substitutions in proteins be deleterious? Certainly, evolution is not lowering the 
mean fitness of the population! In fact,  this idea has a lot to recommend it. 
For example, it can explain three observations about molecular evolution that 
the  neutral  theory cannot explain. The first is the observation that  the  rate of 
substitution of amino acids in proteins is lower than  the  rate of substitution of 
nucleotides in noncoding regions. If most amino acid mutations  are deleterious 
and most nucleotide substitutions in noncoding regions are  neutral,  then  the 
amino acid rate should be lower. 

The second observation is that  there is  only a slight generation-time effect 
in protein evolution but a pronounced generation-time effect  in silent (noncod- 
ing) evolution. Recall that  the generation-time effect  is the observation that 
creatures with shorter generation times evolve faster than do those with longer 
generation times. The neutral theory predicts a generation-time effect if the 
mutation rate per generation is fairly similar across species, as  it is thought 
to be. Mice,  for example, should exhibit a rate of substitution that is  much 
higher than  that of elephants. However, if most mutations  are deleterious, then 
the probability of fixation of these mutations is  lower in mice than elephants 
because the population size of mice  is  much larger than  that of elephants. The 
consequent lower rate of substitution in mice  cancels the generation-time effect. 

Problem 3.15 Graph Equation 3.28 to see if the  rate of substitution of delete- 
rious mutations really does decrease with increasing population size. 

The  third observation is the narrow range of heterozygosities across groups of 
organisms that  are thought to have  very  different population sizes. In Section 2.5 
we argued that  the narrow range could be due to  the effective population sizes 
of species being more similar than their current  actual sizes due to fluctuations 
in their population sizes. Another explanation involves the idea of an effective 
neutral  mutation  rate, ue. If most mutations  are deleterious, then only those 
with selection coefficients  close to 1/(2N) will attain observable frequencies in 
natural populations. The  rate of mutation to such nearly neutral alleles, which 
will be  lower in larger populations, is  called the effective neutral  mutation  rate. 
The smaller effective mutation rate in larger populations makes the mutational 
input, 2Nue,  less sensitive to N than for strictly  neutral  mutations. As a 
consequence, the variation in heterozygosity should be less across species with 
different population sizes. 

Tomoko Ohta is responsible for the theory that most protein evolution is 
deleterious while most silent evolution is neutral. Her theory was incorporated 
into  what is now called the neutral theory, even though  natural selection is 
playing a role, albeit a negative one. The common element in both theories is 
that genetic drift is the force responsible for the substitution of alleles. Motoo 
Kimura once lamented that  the theory was not called the “mutation-random 
drift theory,” as  this  better represents the forces  involved in the  substitution of 
alleles. 
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3.8 Derivation of the fixation probability 

Because  much of our understanding of evolution depends on Equation 3.23, it 
would be remiss not to discuss its derivation. While the derivation is somewhat 
more technical than others in this book, it does serve a8 an entree  into more 
advanced topics in population genetics. 

The derivation of Equation 3.23 begins with a decomposition of the fixation 
probability, 

.(p) = c Prob{Ap}n(p + Ap). 

(The subscript on ~1 will be suppressed in this section, as we  will discuss only 
the fixation probability of the A1 allele.) Imagine a  population with p as  the 
initial frequency of the A1 allele. In the next generation, p will change by a 
random amount, Ap, whose  value  reflects the combined action of genetic drift 
and selection. Suppose you  knew with certainty that p changed to a new  value 
p'. Then, for .(p) you could use the fixation probability for a population with 
initial frequency p'. Of course, you  will not know what the value of p will be 
in the next generation. The best you can do  is to say that a particular change 
occurs with some known probability and  then average over these changes. This 
is  precisely what the decomposition does. Prob{Ap} is the probability of a 
particular change in p ,  and .(p + Ap) is the fixation probability for the new 
frequency. The sum is  over all possible  changes in p .  

Using the notation of expectation as described in Appendix B, the decom- 
position may be written M 

AP 

.b) = EAp{X(p AP)}, (3.29) 

which emphasizes that  the decomposition really says that  the fixation probabil- 
ity in one generation is equal to  the expectation of the fixation probability in 
the next generation (given p in the first generation). 

The next  step in the derivation uses a Taylor series expansion of the fixation 
probability in the second generation, 

which  follows  from Equation A.1. Plug  this  into  Equation 3.29 and use the 
fact that  the expectation of a sum is equal to  the sum of the expectations (see 
Equation B.ll) to obtain 

(3.30) 
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The two expectations in Equation 3.30 are  the mean and (approximately) the 
variance  in the change in p given its  current value. We studied these moments 
in the context of pure drift in Section 2.7. With selection, the mean change in 
p is not zero, as in the case of pure  drift,  but  rather is approximately 

W P )  = (s/2)pq = 4 P )  
for the case of additive alleles (m(p) is a commonly  used notation for the mean 
change  in p).  The expected value of the square of Ap is  very nearly equal to 
the variance in the change in p, because, by Equation  B;2, 

E{(AP)2) = Var{Ap) + E{API2, 

and the square of the mean change in p is  very small, by assumption. The 
variance  in Ap due to genetic drift was  given  in Equation 2.16 and is 

(v@) is  commonly  used  for variance in Ap). Now, Equation 3.30  may  be written 
as 

1 
2 -W(p)T”(p) + rn(p)T’(p) = 0. (3.31) 

Equation 3.31  is a differential equation whose solution, with the proper 
boundary conditions, is the fixation probability. More exactly, it is a linear 
second-order differential equation with the two boundary conditions 

T ( 0 )  = 0, T(1) = 1. (3.32) 

If the initial value of p is zero, fixation is impossible, hence the first boundary 
condition. If the initial value  is p = 1, fixation is a certainty, hence the second. 

The solution to Equation 3.31 subject to boundary conditions 3.32  is  covered 
in all elementary books  on differential equations. Here, we will speed through 
the solution. Those readerswho have trouble with some of the steps should 
consult a differential equation text. 

First, convert Equation 3.31 to a first-order differential equation by defining 

,fb) = n‘03) 

(and thus having f‘ = T “ )  and multiply both sides of the equation by 2/v(p) to 
obtain 

This is a first-order linear differential equation and, as such, is much easier to 
solve than  the previous second-order equation. Multiply both sides of the new 
equation by the integrating factor exp(2Nsp),  and  note  that  the left side is now 
the derivative of a  product ((uv)‘ = uv‘ + U’ZI) ,  so 

- [ f (p)eaNsp]  = 0. 
d 
dP 

, . . . , , ,,.,... .... , . . . ,  . , , . , .. , , , . . .  
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When the derivative of a function is zero, the function must be a  constant, so 

f(p)e2N8P = constant 

and 
f (p) = .'(p) = cle-2NSP, 

where c1 is a constant whose  value  will be determined when the boundary con- 
ditions are imposed. 

Finally, integrate  the  last equation with respect to p to  obtain 

n(p) = c1 1' e-2Nexdx + c2 

1 - e--PNsP 
= c1 

2Ns + c2. 

The second constant  appears because the indefinite integral is only defined up 
to  an additive constant. (If you differentiate both sides of the equation', you 
recover the previous one  for all values of c2.) The lower limit of the integral on 
the right side was  chosen  for  convenience. 

To satisfy the boundary condition n(0) = 0, we require c2 = 0. The bound- 
ary condition n(1) = 1 is satisfied when 

Thus,  the fixation probability is 

as we claimed in Equation 3.23. 
The conceptually important  part of the derivation is the original decompo- 

sition, which  is  called a backward equation. A backward equation relates events 
at a future  time  (ultimate fixation in our case) to events at  the origin of the 
process. Backward equations  are frequently employed in population genetics to 
learn about  the likelihood of different outcomes of evolution as well as learning 
the  time required to reach these outcomes. The reader might enjoy reading 
Kimura's original derivation of the fixation probability published in 1962. 

The derivation brings out  the distinction between mean effects in evolution, 
as  captured in the mean function m(p), and variance effects, as  captured in 
v@). When setting  out to study a new evolutionary model, the first step is 
usually to describe carefully the mean and variance effects. If the only source 
of randomness is genetic drift,  then v(p) = pq/(2N) is the proper variance 
function. However, if the model includes random changes in the environment, 
then a more complicated variance term must be used. The  area of mathematics 
that gives a description of the evolution of the population once m(p) and .(p) 
are known  is called diffusion theory. Warren Ewens' short book, Population 
Genetics (1969), is an excellent introduction to  the use of diffusion theory in 
population genetics. 
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3.9 Answers to problems 

3.1 With the given fitnesses and allele  frequency, Equation 3.1 gives 

0.1 X 0.9 X [0.1 X -0.05 + 0.9 X -0.051 
0.01 x 0.9 + 0.18 x 0.95 + 0.81 x 1 

= -0.004545, 

so in the next generation p = 0.1 - 0.004545 = 0.095455. 

3.2 First, divide all fitnesses by the fitness of AlAl to obtain the relative fit- 
nesses 1, 0.7333,  0.6667. Next, use the comparisons of the homozygotes' 
relative fitnesses to get S = 1 - 0.6667 = 0.3333. Finally, use the relative 
fitnesses of AlAl and AlA2 to get hs = 1 - 0.7333 = 0.2666 and  then the 
computed value of S to get h = 0.8. 

3.3 If h is positive, then  it must be that 1 - hs 2 0 or h 5 l/s. If h is negative, 
there is  no upper bound on its magnitude. 

3.10 For the overdominance model Wmax = 1 - hs, so the genetic load is 

(1 - hs) - [l - 2pqhs - q2s] L =  
1 - hs 

- 4% - hs($ + q2) - 
1 - h s  ' 

which, with the substitution of the equilibrium allele frequency , 

p = (h  - 1)/(2h - 1) 

and some nasty manipulations, becomes 

sh(1 - hs) 
(2h - 1)(1 - hs)'  

L =  

The mean fitness of the equilibrium population is larger than  that of a 
population which  is  fixed  for the A1 allele,  yet the load in the  latter case 
is  zero if the A2 allele  is not included in the description of the homozygous 
population. This is  but,  one of the idiosyncrasies in load theory that come 
from the problem of deciding which genotype should determine tumax. 

3.11 For simplicity, assume that  the probability of carrying a lethal  mutation 
at locus, q, is the same for  all  loci. If there  are m lethal-mutable loci 
in the haploid genome and 20 percent of these are on a single second 
chromosome, then the probability of a single  second  chromosome being 
lethal-free is 

1 - 0.23 = 0.77 = (1'- q)Oa2". 
In a diploid  genome there  are 2m lethal-mutable loci; the probability that 
an  entire genome  is lethal-free is 

(1 - q)2" = [(l - q)0*2m] = 0.771° = 0.073. 1/0.1 
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3.12 

3.13 

3.14 

The probability that a fly from a random  mating  population carries at 
least one lethal  mutation is 1 - 0.073 = 0.926. 

First  obtain  the enzyme activity for A2A2, z, as a function of S by solving 
1 - S =.(l + .)./(a + z), 

a ( 1 -  S) 
a + s  

z = -, 

For this z, the enzyme activity of AlA2 is (1 + z)/2, thus, 

(1 + a ) ( l  +x) 
1 + 2 a + z  l - h s =  

Use  for z the function of S and solve  for h, 

h=- a 
2a + S' 

The  ratio of probabilities is the  ratio of the genetic loads for deleterious 
and  lethal  mutations. 

by Equation 3.10. As the  ratio of the  total  mutation  rate to deleterious 
alleles  is now thought to be at least 10 times the lethal  mutation  rate, a 
Drosophila is 10 times more likely to die of a mutation of small effect than 
it is to die from a lethal  mutation. 
For a  particular locus, the  ratio of the probability of death as a heterozy- 
gote to  that of a homozygote is 

2pghs 2h 
M -, 

4 q2 5 

which can be  quite large for small g.  

The mean value of si is 

, E { S ~ }  = 0.25 X 0.1 + 0.5 X 0 + 0.25 X -0.11 = -0.0025, 

and  the mean value of S: is 

E(s:} = 0.25 X 0.01 + 0.5 X 0 + 0.25 X 0.0121 = 0.005525. 

As 1 - 0.00251 < 0.005525, Equation 3.21  shows that  natural selection will 
hold the locus in a polymorphic state in this species. 



Chapter 4 

Nonrandom Mating 

Most natural  populations  deviate in some way from the random  mating ideal 
considered thus  far. For example, a species whose range exceeds the distance 
an individual moves  in its lifetime cannot possibly mate at random.  Departures 
from random  mating can have profound consequences on the evolutionary dy- 
namics of a species. The various ways in which a species might deviate from 
random mating are diverse, but we will concentrate on only two important de- 
partures from random  mating, inbreeding and  population subdivision. Both 
may be examined by first describing a generalized form of the Hardy-Weinberg 
law that includes a new state variable, F ,  and  then by showing the dependency 
of F on the level of inbreeding or subdivision. 

Inbreeding occurs when individuals are more likely to mate with relatives 
than with randomly chosen individuals. Inbreeding increases the probability 
that ,offspring are homozygous and, if practiced by a non-zero fraction of the 
population, that individuals in the  population are homozygous. You will recall 
that  the heterozygous effects of alleles affecting fitness traits  are generally less 
than one-half; thus,  this increase in the frequency of homozygotes has a detri- 
mental effect. Inbreeding depression is the phenomenon of lower fitness with 
higher  levels of inbreeding. This phenomenon is quite general: the fitness of 
most species decreases with increasing homozygosity.  For some, the decrease 
is dramatic, with complete infertility or inviability after only a few generations 
of brother-sister  mating.  Inbreeding depression in humans will be described in 
Section 4.3, followed  by a discussion of the role of inbreeding depression in  the 
evolution of selfing in plants. 

A species with restricted  migration will appear to be inbred because there 
are more homozygotes than expected under the assumption of random  mat- 
ing, a condition known as Wahlund’s effect.  Sewall Wright invented a set of 
measures of departures from Hardy-Weinberg for subdivided populations called 
F statistics. Here we will consider only the simplest of these, which  is called 
FST, and show  how FST has been used to investigate the effects of migration 
on geographic variation in a species. 

85 
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4.1 Generalized Hardy-Weinberg 

An assumption of the Hardy-Weinberg law  is violated when populations do not 
mate  at random. We write the genotype frequencies in this case as follows: 

Genotype: A1 A1 A1 A2 A2 A2 
Frequency: p2(1 - F )  + pF 2pq(l - F) q2(1 - F) + qF 

The new state variable, F,is used to describe the deviation of the genotype 
frequencies from the Hardy-Weinberg frequencies. When F = 0, we recover 
the usual Hardy-Weinberg frequencies. If 0 < F 5 1, there is an excess of 
homozygotes compared to  the Hardy-Weinberg expectation. When F < 0, 
there is an excess of heterozygotes. 

Note that  the pair of state variables p and F are always  sufficient to describe 
the genotype frequencies at a single  locus with two  alleles. At first,  this may 
seem incorrect because two variables should not be able to describe fully the 
state of a three-variable system. However, although there  are  three genotype 
frequencies, 2 1 1 ,  2 1 2 ,  and 2 2 2 ,  they must add to one. Thus,  the dimensionality 
of the space of genotype frequencies  is  two rather  than three. 

Problem 4.1 Find p and F for a population in which the  genotype frequencies 
of AIAl,  A1A2, and A2A2 axe 0.056, 0.288, and 0.656, respectively 

F has played such an  important role in population genetics that it  has ac- 
quired a myriad of interpretations. Most of these occur when F is between zero 
and one, as occurs with inbreeding and subdivision. In  this  instance, F may 
be interpreted as the probability of homozygosity due to special circumstances, 
PHSC (pronounced phonetically). For example, the frequency of A I  A1 individ- 
uals in the population or, equivalently, the probability that a randomly chosen 
individual is A I  A1 may be obtained by the following argument. 

Draw an individual at random from the population. The probability that one 
of its two  alleles at the A locus is A1 is p .  The probability that  the other allele 
is also AI, given that  the first is AI,  is F + (1 - F)p. This  latter event includes 
two mutually exclusive components: either the second  allele  is A1 because of 
homozygosity due to special circumstances, which occurs with probability F, 
or it is not, which occurs with probability (1 - F). If the individual is not 
homozygous due to special circumstances, the second  allele may still be an A1 
allele, as  the second  allele is, in effect, drawn at random from the population; 
thus, the probability that  it is an A1 allele  is p .  We have established that  the 
probability that  the second  allele  is A1 given that  the. first is AI, is F + (1 - 
F ) p .  The joint probability of A1 for the first and second  alleles in the chosen 
individual is  now seen to be p[F + (1 - F)p], as given above. 

A second interpretation of F ,  when it is  between zero and one, is as  the 
correlation of uniting gametes. A full description of the correlation may be 
found in Appendix B. 

Now that we have a general way  of describing the  state of a population, 
the next  step is to explore how nonrandom mating  affects F. We first consider 
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Parent-offspring Full sibs 

Figure 4.1: Two pedigrees  used  in the  text  to illustrate the calculation of the coefficient 
of kinship. 

inbreeding, which occurs when relatives are preferentially chosen as  mates. The 
quantitative  aspects of inbreeding depend on the degree of relatedness of mates, 
which  will be explored in the next section. 

4.2 Identity by descent 

There are many occasions where a quantitative measure of the relationship 
between relatives is required. In this  chapter, we need such a measure to describe 
inbreeding. In the next chapter, we need it  to find the correlation between 
relatives for quantitative  traits. Many different measures are possible; ours, 
naturally, will be based on the genetic relatedness of relatives. Relatives are 
genetically similar because they  share alleles that  are descended from common 
ancestor alleles. Recall that two  alleles at  the same locus that  are descended 
from the same ancestral allele somewhere in their recent pasts  are said to be 
identical by descent. Thus,  identity by descent is a  natural concept to use as 
the basis of a quantitative description of the relatedness of relatives. One simple 
measure of relatedness that uses identity by descent is the coefficient of kinship 
and is usually notated as fEy. The coefficient of kinship is the probability that 
two alleles, one from individual X and one from individual Y, are identical by 
descent. 

The coefficient of kinship is easy to calculate for simple pedigrees. For  com- 
plicated pedigrees, one usually uses one of several available algorithms. As all 
of the pedigrees used  in this book and most of population genetics are simple 
and as the  act of reasoning through a pedigree is  itself instructive, we will argue 
from first principles. 

The simplest pair of relatives is a  parent  and its offspring, as  illustrated in 
Figure 4.1. In  the figure, the offspring  is labeled X and  the  parent, Y. To  find 
the coefficient of kinship in this case, begin by choosing an allele at random 
from the offspring and  an allele at random from the  parent, as illustrated in the 
figure by the arrows pointing away from alleles in X and Y. The probability 
that these two  alleles are identical by descent is 1/4, which  is obtained in two 
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Figure 4.2: The three  possible  numbers of shared  alleles  between relatives. The arrows 
point to pairs of alleles that are identical  by descent. is the probability of the 
particular pattern of shared alleles. 

steps.  First,  the probability that  the allele  chosen from X came from Y is 1/2. 
(It is equally likely that this allele came from either  parent.) Second, given that 
the allele came from Y, the  probability that  it is the one originally chosen from 
Y is also 1/2. As these two events are independent, the  total probability that 
the two chosen  alleles are identical by descent is 

The  steps  to  the coefficient of kinship for  full sibs are also illustrated in 
Figure 4.1. Here one sibling is X and the other is Y. As before, trace backward 
from the allele chosen from X .  This  time, the allele will be descended from one 
of the four alleles in  the two parents with certainty. The probability that a copy 
of the ancestor allele ends  up in individual Y is one-half; the probability that 
that same allele is the chosen  allele  is also one-half. Thus, f ~ s  = 1/4,  just  as 
for parent  and offspring. 

Problem 4.2 Find  the coefficient  of kinship for half-sibs and for  first cousins. 

The fact that  the coefficient of kinship is the same for parent-offspring and 
full sibs points out  the inadequacy of a single number to capture  the genetic 
relatedness of relatives. A parent  and its offspring always have exactly one allele 
each that  are identical by descent. (The  other allele in the offspring comes  from 
the  other  parent.) Full sibs, on the  other  hand, may have zero, one, or two pairs 
of alleles that  are identical by descent. Obviously, another  measure of genetic 
relatedness is needed. The most complete measure is the  set of probabilities 
of sharing zero, one, or two pairs of identical-by-descent alleles, ro, T I ,  and ~ 2 ,  

as  illustrated  in Figure 4.2.  Some examples of these  probabilities are given  in 
Table 4.1. 

The parent-offspring calculation of ri should be obvious. The full sib case 
will take  a  little more effort. The probability ~2 = 1/4 may be reasoned as 
follows. Pick one of the two alleles  in individual X .  The probability that  an 
allele identical by descent with this allele is in individual Y is 1/2. Now pick 
the  other allele in X .  As it necessarily came from the  other  parent,  its chance 
of having an identical-by-descent allele in Y is independent of the history of the 
first allele and is also 1/2. By independence, r2 = 1/4.  The converse of this 
argument gives TO = 1/4; TI  = 1/2  is obtained by subtraction. 
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Relationship TO T I  ~2 

Parent-offspring 0 1 0 
Full sibs 1/4  1/2  1/4 
Half sibs 1/2  1/2 0 
First cousins 3/4  1/4 0 

Table 4.1: The probability of two  relatives  sharing  zero, one, or two  alleles that are 
identical by descent. 

The difference  in the two pairs of relatives, parent-offspring and full sibs, 
is now apparent. A parent  and offspring  always  have  one  allele each that  are 
identical by descent, while this occurs only  one-half the  time in full sibs. On the 
other hand, full sibs may share two  or no identical-by-descent alleles, something 
that never happens with a parent  and  its offspring. As a consequence, in certain 
situations full sibs may appear more similar than parent-offspring, but only  when 
there is dominance in the phenotype, as will be shown in Chapter 5.  

One needs a certain  talent for the calculation of these probabilities to come 
easily. Personally, I find them difficult and usually pull a book off  of  my shelf  for 
any but  the simplest pedigrees. If they do come  easily to you, then by all means 
enjoy finding the probabilities for other pairs of relatives. For the remainder of 
this book, only those appearing in Table 4.1 will be required. 

The coefficient of kinship may be written in terms of the ri as 

fxy = TO X 0 +TI X 1/4 + ~2 X 1/2 
1 1  - - 4'1 + 5 T 2 .  

Each term in the sum corresponds to one of three mutually exclusive ways that 
two  chosen  alleles might be identical by descent. For example, the second term is 
the probability that X and Y share exactly one identical by descent allele times 
the probability that these two  alleles are chosen, given that they are shared. 
The mean number of shared alleles  is 

F = o x T o + l x T ~ + 2 x T 2  
= T1 + 2T2, 

using Equation B . l .  One-half the mean number of shared alleles, 

is  called the coefficient of relatedness, T .  Some authors use the coefficient of 
relatedness where we use the coefficient of kinship. The two are  related by 
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Figure 4.3: The  viabilities of young children m a function of their  inbreeding  coeffi- 
cients.  The curve is the function exp(-A - BFr) with A = 0.1612 and B = 1.734. 
The data are from Morton et  al. (1956). 

4.3 Inbreeding 

Inbreeding occurs when an individual mates with a relative. The progeny of such 
matings  are more likely to be homozygous than  are progeny produced by random 
matings.  The level of inbreeding is measured by the inbreeding coefficient, FI, 
which  is the probability that  the two  alleles in an individual are identical by 
descent. As one of these alleles  comes  from one parent and  the other from the 
other  parent,  the inbreeding coefficient of an individual is just  the coefficient of 
kinship of its  parents, FI = fag. For example, the inbreeding coefficient of the 
offspring of a mating between  full  sibs  is 1/4 because f ~ s  = 1/4. 

As inbreeding increases the probability of being homozygous and as the 
average heterozygous effect of alleles  affecting viability is  less than one-half 
(at least in Drosophila), we would expect that inbred individuals would be less 
viable than outbred individuals. One demonstration is  given in Figure 4.3, which 
graphs the viability of young human children as a function of their inbreeding 
coefficient. . The functional dependence of viability on F1 may be described 
theoretically in much the same way that we described the effects of complete 
inbreeding in the Greenberg and Crow experiment. The  particular approach 
that we  will use  comes  from the classic paper by Newton Morton,  James Crow, 
and H. J. Muller published in  1956. 

To derive the mean viability of the offspring of relatives, we require the 
frequencies of the three genotypes, AIAI, A1A2, and A2A2, among the offspring. 
First, consider the frequency of the AlAl homozygotes. An  offspring could be 
AI  A1 for  two remons. Its two  alleles  could be identical by descent, which occurs 
with probability FI, and  they  both could be A I ,  which occurs with probability p 
(given that they  are identical by descent). Thus, the probability of being A1  A1 
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for this  reason is ~ F I .  The second way to be an AlAl is to have the two  alleles 
not identical by descent but  both A1 anyway. The probability of this event is 
(1 -F1)p2. (If the individual does not have  two identical-by-descent alleles, then 
it is as if the individual were the  product of random mating.) Similar reasoning 
leads to  the following: 

Genotype: AI  AI A1  A2 A d 2  
Frequency: p2(1 - F I )  + ~ F I  2pq(l- F I )  q2 (1 - F I )  + qF1 
Fitness: 1 1 - hs l - S  

The mean fitness of the offspring  is 

tii = 1 - 2pq(l- FI)hs - [a2(1 - 'FI)  + ~ F I ] s  
= l - a - b F I ,  

where 

a = 2pqsh + q2s 

b = 2pqs(1/2 - h). 

In real populations, h < 1/2; therefore, b is  always positive. Consequently, tii is 
a decreasing linear function of Fr. 

The probability of survival of a child, S, is  affected  by all of its loci plus 
various nongenetic  factors, 

S = n(1- z j )  n(1- ai - b i ~ I > ,  

j i 

where xj represents the probability of death  due  to  the j t h  nongenetic  factor 
and the subscripts on a and b refer to the  ith locus. The first product is  over 
all nongenetic  factors, and  the second product is  over all loci.  By now, you 
should have  recognized the implicit assumption that  the loci act independently. 
This  assumption was also invoked in the analysis of the Greenberg and Crow 
experiment. With our usual approximation for the  product of numbers each of 
which  is  close to one, we get 

S e -A- -BF~ (4.2) 

where A = C j x j  +Cia i  and B = Cibi. 
As the  natural logarithm of S is a linear function of F I ,  

log(S) = -A - B F I ,  

it is a simple matter  to  estimate  the values of A and B using standard regression 
methods.  Morton,  Crow, and Muller  provide the following estimates: 

A = 0.1612, B = 1.734. 



92 Nonrandom Mating 

The curve in Figure 4.3 is plotted using these values of A and B. For small 
values of FI, 

S W e-A(l  - BF;), 

which explains the roughly linear decrease of viability with FI for the leftmost 
points in Figure 4.3. 

Problem 4.3 Suppose all of the inbreeding depression in Figure 4.3 is due  to 
1000 loci  with lethal  mutations at  mutation-selection equilibrium. If the mu- 
tation rate  to lethals at  each of these loci is what are  the heterozygous 
effects of the  lethal  mutations, h? 

The complete story  about  the relationship between mean fitness and  the 
inbreeding coefficient  is more complicated. The assumption that fitnesses at 
different loci  may be multiplied is at variance with many experimental studies 
of inbreeding. Generally, the decrease in fitness with FI goes faster than linear 
because of synergistic effects of mutations. Even the scant data in Figure 4.3 
bear this  out  as the rightmost two points lie  below the curve drawn under 
the assumption of multiplicative epistasis. As this will be  important in the 
discussion of the evolution of sex in Chapter 6, we  will return to  the interaction 
between  loci at that time. However,  even  when synergistic epistasis is present, 
the decrease in mean fitness with FI is approximately linear for small FI, as is 
the case with the human data. 

Inasmuch as inbreeding increases homozygosity and,  as a consequence, low- 
ers fitness, it is not surprising that many  species  have  evolved mechanisms to 
reduce the likelihood of mating with close relatives. Incest avoidance has been 
documented in many primate societies and, in humans, falls under the rubric of 
incest taboos, which are present in most cultures. 

Now it is time to move  from a description of the offspring of matings between 
relatives to a description of an inbred population. It should come as a pleasant 
surprise that there is nothing to do other than  to note that F in the generalized 
Hardy-Weinberg described in Section 4.1 is  precisely the inbreeding coefficient 
of the population. In doing so, we imagine a population in  which mating with 
relatives is common. We need not specify the kinds of matings that  are taking 
place, as long as we happen to know FI. Unfortunately, if  we do know the sorts 
of matings, it is  very  difficult to find FI for the population. For example, if 
we knew that one-half of the time individuals mated at random,  one-quarter of 
the time  they  mated with their first cousins, one-eighth of the time with their 
grandparents,  and the remaining times equally between full sibs, half sibs, and 
second cousins, it would be a struggle to determine FI for the population. 

The one example of inbreeding that is easy to study theoretically happens 
to be the one that is most relevant to  natural  populations, mixed  selfing and 
outcrossing as practiced in many plant species. Under the mixed model, an 
individual is created by an act of selfing (literally, mating with one’s self) with 
probability a or by random  mating with probability (1 - a). Selfing  will, in 
general, change Fr. The value of FI in the next generation, as a function of its 
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current value, is 
1 Ff = ~ [ F I  + (1 - F I ) ~ ] .  

An individual in the next generation can have  two  alleles that  are identical 
by descent  only if the individual is produced by an act of selfing. Thus,  the 
inbreeding coefficient in the next generation is multiplied by the probability of 
selfing, a. Given that  an individual was produced by selfing, it can have two 
identical-by-descent alleles  for one of two reasons: either its  parent  had two 
identical-by-descent alleles,  which occurs with probability FI, or its  parent's 
alleles  were not identical by descent, but  the two  alleles  in the offspring are copies 
of the same allele in the parent, which occurs with probability (1 - FI) (1/2). 

The change in F1 in a single generation is 

Partial selfing produces two antagonistic forces:  selfing increases F1 while out- 
crossing decreases FI.  Eventually, an equilibrium is reached where Aa F1 = 0, 

Notice that we are  able to calculate FI without making use  of allele frequencies; 
we conclude immediately that allele  frequencies  do not change under mixed 
selfing and outcrossing. In fact, allele frequencies do not change under any 
system of inbreeding. Genotype frequencies do change, and  they change in 
such a way that there  are fewer heterozygotes than  are seen  in an outbreeding 
population. 

Problem 4.4 Suppose you observed the following genotype frequencies in a 
plant species that engages in mixed selfing and outcrossing: 

Genotype: AlAl AlAz AzAz 
frequency: 0.828 0.144 0.028 

What is the frequency of  selfing, a, if  the  population is at  equilibrium? 

Problem 4.5 Graph the inbreeding coefficient as a function of a for an equilib- 
rium mixed selfing and outcrossing population. 

Some interesting evolutionary questions arise with species that  are capable 
of both selfing and outcrossing. For example, in many plant species there is 
an intrinsic advantage to selfing,  which leads to  the evolutionary conundrum: 
Why don't all plant species  self? The  situation is illustrated in Figure 4.4. The 
outcrossing pedigree on the right represents a typical individual in an outcrossing 
population of constant size. This individual leaves behind, on average, two 
gametes, one carried in an ovule and  the  other in a pollen grain. These gametes 
appear as filled  circles in the figure. 



94 Nonrandom Mating 

RP @ 
/ h  

@ @  @ @  
Selfer Outcrosser 

Figure 4.4: The  gametes  produced by a selfer  and an  outcrosser. The p to the right  of 
an arrow indicates that the parent’s  contribution  came from pollen; an o indicates it 
came  from an ovule. The filled  circles  represent  gametes  from the illustrated  parents; 
the open  circles  represent  gametes  chosen  at  random  from the gamete pool. 

Suppose a mutant  appears that self-fertilizes all of its ovules, M illustrated 
on the left side of the figure. Suppose also that  there is enough pollen in each 
individual of this species that  the few grains needed  for self-pollination by the 
mutant represent a small fraction of the  total pollen. As a consequence, the 
selfing mutant  has essentially the same quantity of pollen available for outcross- 
ing as does a nonselfing individual. All  else being equal, the selfing mutant will 
leave behind three gametes for  every  two of the outcrossing plants, as indicated 
by the  three filled  circles in the figure. Two of the gametes are in its selfed 
offspring; one is in its outcrossed offspring. Thus,  the  mutant should increase 
in frequency, perhaps leading to  the establishment of selfing as  the usual mode 
of reproduction. 

Of course, all else  is not equal. The selfed  offspring produced by the selfing 
mutant will  be  less  fit due to inbreeding. The average number of gametes left 
behind by the selfer  is 

2e-A-BF~ + e - A ,  

using Equation 4.2. (Each term in the sum is the number of gametes from 
the selfer times the fitness of the zygote containing the gametes.) The average 
number produced by an  outbred individual is 2e-A. The selfing mutant will 
leave behind more gametes, on average, if 

2e-A-BF~ + e-A > ~ e - ~ ,  

or, because FI = 1/2  for the selfed  offspring of an  outbred individual, 

e-B/2 > 112. 

Taking the  natural logarithm of both sides and  rearranging gives the condition 
for increase of the  mutant, 

B < 210g(2) = 1.38. 
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Recall that B is a measure of the fitness decrease that occurs with inbreeding. 
If B is large, the inequality will be violated. Inbreeding depression will be suf- 
ficient to drive the selfing mutant from the  population. Otherwise, the intrinsic 
advantage of selfing  will be sufficient to override inbreeding depression and  the 
mutant will increase in frequency. For the human data illustrated in Figure 4.3, 
B = 1.734. If we were plants,  our inbreeding depression would be too high to  
allow the evolution of selfing. 

This analysis can only tell us about  the  fate of a new  selfing mutant. As the 
frequency of the  mutation increases, a more complicated analysis is required to 
deal with all of the genotypes that are competing in the population. However, 
even this simple analysis suggests that plants should be  either nearly complete 
selfers  or nearly complete outcrossers. Intermediate levels of selfing  will always 
be at a disadvantage when compared to higher levels of selfing  when the inbreed- 
ing depression is small. Otherwise, more outcrossing is favored. In  fact,  plants 
do tend to be at one extreme  or the  other. Inbreeding depression is clearly an 
important  contributor to this pattern.  Other factors are  important  as well.  For 
example, weedy  colonizing species might self as a way of guaranteeing that a 
mating occurs when the population density is  very  low.  For a more thorough 
treatment of the evolution of self-fertilization, read the two papers by Russ 
Lande and Doug  Schemske (Lande and Schemske 1985; Schemske and Lande 
1985). 

The discussion of the evolution of selfing illustrates a style of inference based 
on the  fate of rare  mutants  that is commonly used by evolutionists. A trait  that 
is resistant to invasion by all mutants is often called an evolutionary  stable 
strategy, or  ESS. John Maynard Smith's book Evolutionary Genetics (1989) 
has many examples of the use of ESS methodology. 

Thus  far, we have stressed the deleterious effects of inbreeding. However, 
although the initiation of inbreeding is always detrimental, a population that 
maintains  a  steady level of inbreeding is not necessarily worse off than  an  out- 
breeding population. Inbreeding increases the effectiveness of selection against 
partially recessive (h  < 1/2) deleterious alleles.  At equilibrium, the frequency 
of these alleles will be lower in an inbreeding population than in an outbreeding 
one and, as a consequence, the genetic load will actually  be lower than in the 
outbreeding  population. To see this, we need to repeat the argument leading 
to Asp in Equation 3.2, but using the generalized Hardy-Weinberg frequencies. 
By  now  you should have little  trouble showing that 

where 
tij = 1 - (1 - F1)(2pqsh + Q ~ S )  - FIqs. 

When the frequency of the deleterious allele is  very small, 

Asp M (1 - Fz)qhs + FIqs, 
which  is the inbreeding equivalent of Equation 3.8. The equilibrium between 
the increase of Q by mutation (Aup M -U from Equation 3.7) and  the decrease 
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by selection occurs when 

Comparing this to Equation 3.9, we see that inbreeding does lead to a decrease 
in the frequency of the deleterious allele at equilibrium because 

(1 - FI)hs + FIS > hs 

when 0 < h < 1, and therefore 41 < 4. 

mating the mean fitness by 
The genetic load of the equilibrium population is derived by first approxi- 

tij M 1 - (1 - F1)2qsh - FIqs 
and  then  substituting  the equilibrium value 4 to obtain 

2(1- FI)h + FI 
(1 - F I ) ~  + FI 

a - l - U  

Recall that  the genetic load is, by definition, 

Wmax - a L =  , 
Wmax 

so that  the equilibrium genetic load under selfing  is 

LMU 2(1- FI)h + FI 
(1 - Fl)h +F' * 

With complete outbreeding, FI = 0, L = 2u just  as we discovered earlier in 
Equation 3.11. However,  when FI = 1, the load is  only U, one-half the outbred 
load. Thus,  an equilibrium inbreeding population will  have a lower genetic load 
than  an outbreeding population! If, for  some reason, an outcrossing population 
begins selfing, the mean fitness of the population will initially decrease because 
of inbreeding depression. Then,  as selection  begins to lower the frequency of 
deleterious mutations, the mean fitness will increase to a level that is higher 
than  that of the original outbreeding population. This does not mean that  the 
population is better off in a long-term evolutionary perspective. For example, 
highly inbred populations are less able to generate genetic diversity through 
recombination. An increase in genetic diversity can both speed up the  rate of 
evolution and aid in the removal of deleterious mutations from chromosomes, 
as will be shown in Chapter 6. 

4.4 Subdivision 

Many species occupy such vast geographic areas or have such effective barriers to 
migration that they  cannot behave as a single, randomly mating  population. In 
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such cases, there will be genetic differentiation between subpopulations, which 
leads to departures from Hardy-Weinberg for the  entire species. In the case 
where there is random  mating within each subdivision, the genotype frequencies 
for the entire species are described by a new incarnation of F called FST. For 
example, suppose a species  is subdivided into two  equal-sized patches with p1 = 
1/4 in the first patch  and p2 = 3/4 in the second. The genotype frequencies in 
the two patches are  the Hardy-Weinberg frequencies  given in the first two lines 
of the  table below. 

Genotype: 
Frequency in patch 1: 
Frequency in patch 2:  
Frequency in species: 
Hardy-Weinberg frequencies: 

The genotype frequencies  for the entire species are  the averages of the frequencies 
in the two patches. For example, the frequency of A1 A1 is 

as given in the  third line of the table.  The frequency of the A1 allele in the 
entire species  is  obviously p = 1 / 2 ,  so the expected Hardy-Weinberg frequencies 
are  as given in the fourth line of the table. Even though each subpopulation 
has Hardy-Weinberg frequencies, the species as a whole does not.  There  are too 
many homozygotes; the excess requires that FST = 1/4, which is obtained by 
solving 

As an observer,, you  have no way of knowing whether the excess of homozygotes 
is due to inbreeding, to subdivision, or to some other cause. You could sample 
the species  more carefully until you identify the geographic substructure,  but 
this is often more difficult than it first appears. 

This example may  be generalized to an  arbitrary number of patches with 
any allele frequency in each. The aim is to find an expression  for FST in terms of 
the allele frequencies in the subpopulations and the relative sizes of the subpop- 
ulations. Later, we  will see how to use FST to investigate the role of migration 
in the genetic structure of a species. 

Let pi be the frequency of the A1 allele in the  ith subpopulation. Let the 
relative contribution of this subpopulation to  the species or sample be ci, C ci = 
1. Let p be the average frequency of the A1 allele across patches, p = C cipi, 
and let q = 1 - p .  As with the example, the frequencies of genotypes are 

Genotype: A1 A1 A1 A2 A2 A2 

In ith patch P: 2Piqi 4: 
In  species: c cap: c ci2piqi c ciq: 
In species: p2 ( 1  - FST) + p F s ~  2pq( 1 - FST) q2 (1 - FST) + qFsT 

2 p q ( l -  F )  = ( 1  - F ) / 2  = 3/8. 
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By equating the two  ways of writing heterozygote frequencies in the species, 

we get 

Using 

and c 
2pq=l -p  - q  2 2  

the expression for FST may  be written  as 

FST = 
c + g:) - p2 - g2 - Gs - GT 

2P9 ~ - G T  ’ - 

where 

GT = p2 + q2 

(4.3) 

GT is the probability that two  alleles drawn at random  (with replacement) from 
the entire species are identical by state. Gs is the probability that two  alleles 
drawn at random (with replacement) from a randomly chosen subdivision are 
identical by state. (With probability Ci the  ith patch is chosen.  Given this, 
with probability p: +g: two randomly drawn alleles are identical by state.) FST 
is  seen as a measure of the difference  between the probability that two  alleles 
drawn from within a subdivision are identical compared to  the probability that 
two  alleles drawn at random from the species are identical. 

FST may  also be written  as a function of the variance of the allele frequencies 
across patches by substituting 

and c ci9; - g2 = var{gi} 
into the middle first expression for FST in Equation 4.3. (See Equation B.2 if 
the allele frequency variance formulae are not familiar.) This gives 

- - 2Var{pi} 
~ - G T  

The final step follows  from gi = 1 - pi and  Equation B.10. This result shows 
that FST is  always positive. As long M there is variation in the allele frequency 
across subdivisions (Var{pi} > 0), the genotype frequencies of the species will 
exhibit a deficiency of heterozygotes, a condition known as Wahlund’s effect. 
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I \ Island I 

~~ 

Figure 4.5: The island model. 

Problem 4.6 Verify that  the expression for FST using the variance in allele 
frequencies gives the correct value for the example at  the beginning of this 
section. 

Inbreeding and subdivision both lead to  an apparent deficiency of heterozy- 
gotes over Hardy-Weinberg expectations. Thus,  nothing can be said about  the 
causes of an observed  deficiency without more information. One interesting case 
where the deficiency of heterozygotes could  be attributed to subdivision involves 
limpets from the intertidal zone of Western Australia  as  reported in two 1984 
papers by Michael Johnson and  Robert Black.  An electrophoretic survey of 
protein polymorphism in limpets from the intertidal zone found a deficiency of 
heterozygotes with FST values ranging as high as 0.018. A careful study re- 
vealed that there was temporal variation in allele  frequencies of new recruits. 
Thus,  the limpets at any one spot in the  intertidal zone represented a mixture of 
groups of limpets with different  allele frequencies, with a consequent Wahlund’s 
effect. 

FST is a very crude measure of the geographic structure of a species. As it 
is just a single number, it cannot distinguish between, say, an allele frequency 
cline  from north  to south  and a hodgepodge of independent allele frequencies 
in each subdivision. Both patterns produce a positive FST. There is one very 
special situation where FST may tell something about  the migration rates of 
species. This occurs when the segregating alleles are  neutral and  there  are  a 
large number of subdivisions with equal migration rates between them. Sewall 
Wright  was the first to explore this model, which  is usually called the island 
model. As we describe the island model, it will not appear to apply to a large 
number of subdivisions. Bear with me; we  will get to  that model after  a  short 
development of the literal island model. 

The  structure of Wright’s island model  is illustrated in Figure 4.5. There is 
a very large, effectively infinite, mainland population that sends migrants to  the 
island. There  are N diploid individuals living  on the island. Each generation a 
fraction, m, of these individuals depart for  places unknown, to be replaced by 
individuals from the mainland population. For simplicity, we  will assume that 
haploid gametes rather  than diploid individuals migrate. While not realistic 
for  many species, this assumption has no  effect on the properties of the island 
model that  are of interest.  Thus, 2Nm gametes migrate each generation. 

Genetic drift and migration are  the only evolutionary forces acting on the is- 
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land  population. Genetic drift works to eliminate genetic variation on the island, 
while migration brings in  new genetic variation from the mainland. Eventually, 
an equilibrium is reached with the level of variation on the island determined by 
N ,  m, and  the  amount of variation in the mainland population. There should 
be a familiar ring to this model. If we were to  substitute mutation for migration, 
the island model would sound remarkably like the model of mutation  and  drift 
described in Chapter 2, which  led to Equation 2.6, 

In  fact, with an appropriate assumption, the equilibrium level of variation in 
the island is 

1 
G =  1 + 4 N m '  (4.5) 

The  appropriate assumption is simply that each migrant allele is genetically 
unique. If the mainland pppulation is truly infinite, then  this  assumption is 
automatically satisfied as G = 0 when N = m. Thus,  the change in ?l on the 
island due to migration is 

Am% = 2m(l -'H), 

which  is the migration equivalent to Equation 2.10 for mutation.  The change 
in 7f due to genetic drift is, from Equation 2.2, 

1 
2N 

ANN = --?l. 

At equilibrium, when A,% + ANN = 0, 6 is  given  by Equation 4.5. 
The homozygosity, as measured by 9, changes fairly quickly from near one 

to near zero as 4Nm changes from  being  less than one to greater than one. 
When near zero, genetic drift removes most of the variation from the island. 
When large, the island population's homozygosity  is  like that of the mainland. 
Thus, when the fraction of migrants is greater than  about 1/(4N), the effects 
of isolation become unimportant  and the island appears to be infinite in size, 
as indicated by its value of G. This observation becomes  compelling  when  ex- 
pressed  in numbers of migrants  rather than in fraction of migrants. Isolation 
disappears if m > 1/4N, or, equivalently, if 2Nm > 1/2. The  absolute num- 
ber of diploid migrants each generation is 2Nm (strictly, the number of pairs 
of haploid genomes, as gametes rather  than zygotes migrate in our model). If 
more than one individual migrates every other  generation,  then the effects of 
isolation become unimportant. Surprisingly, this  statement is independent of 
the population size of the island. One might have thought that more migration 
would  be required to make large islands like the mainland. However,  in large 
islands drift is a weak force, so less migration is needed to balance drift.  The 
message is clear: very little migration can make a subdivided species appear 
like. one large randomly mating species  when neutral alleles are involved. 
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It is  now time to bring FST back into  the discussion and with it a change 
in the description of the island model. Instead of a mainland-island structure, 
imagine a large number of patches, each exchanging a fraction, m, of their 
gametes with all of the other patches each generation, exactly as was assumed 
in the selection  model illustrated in Figure 3.9. Said another way, the 2Nm 
immigrants into each patch each generation are chosen at random from the other 
patches. If the number of patches increases to infinity, the species population 
size  will be infinite, while the size of each patch will remain fixed at N. From 
the point of view of a particular  patch, the rest of the patches collectively are 
just like the mainland in  Wright’s island model. 

The homozygosity in each patch is still given  by Equation 4.5, which  is  essen- 
tially the same as Gs as defined  in Equation 4.4. (The qualification “essentially” 
refers to an  error of approximately 1/2N that occurs when the expected value 
of the homozygosity, G, is equated with the probability of identity by state, 9, 
as discussed  in Section 2.7.) Gs is the average value of the homozygosity across 
subdivisions. Equation 4.3 for FST also requires GT,  which  is the probability 
that two  alleles drawn at random from the species are identical by state. As the 
species population size  is infinite, GT = 0. Thus, for the island model, 

If we knew the  patch size  for a species, N, and  its FST, then we would  know its 
migration rate, assuming that all of the assumptions of the model are  met. 

This is a big it. To  use Wright’s island model to estimate m or mN,  one 
must be certain that  the variation at the locus under study is neutral, that 
the population is at equilibrium, and that  the migration pattern at least ap- 
proximates that of the island model. Despite the fact that these  assumptions 
are seldom, if ever, met, FST is frequently used to gain some insights into the 
genetic structure of a species.  For a discussion of the pitfalls of this  approach, 
read the paper by  Monty Slatkin  and Nick Barton (1989). 

Problem 4.7 Calculate FST for the  data in n b l e  1.3. Pretend  that  there  are 
only two  alleles  by using the S alleles for A1 and lumping the  other alleles into 
Az. First, assume that all of the subdivisions are  the  same size (ci = 1/81. 
Next, assume that 

ci = { 0.2 i = 1,2 ,3 ,4  
0.05 i = 5,6,7,8. 

Does the  fact that FST depends on your assumption about  the ci make you 
nervous? 

4.5 Answers to problems 

4.1 The frequency of the A1 allele  is 

1 
p = 0.056 + 5 X 0.288 = 0.2. 

, . . , . _ . . . .  . . . . .  ” . . . . . . . . . . . . I  . , . .. . 
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F may be obtained from the frequency of heterozygotes by solving 

0.288 = 2pq(l - F) = 0.32(1 - F) 
to obtain F = 0.1. 

4.3 Assuming 1000 identical loci with rare  lethal  mutations, 

Solving the final equality yields h = 0.0057. 

4.4 The allele frequency is p = 0.9 and  the inbreeding coefficient is 
A 

F1 = 0.2 = - 2 - a '  
a 

Solving for alpha yields a = 1/3. 

4.6 In the example, 
1 1 1 3 1  p = s x z + s x z = 2 '  

The variance in p is 

Var{p}= - 1 x ( ; ) z + i  1 x (:) - (i) 2 1  =G. 2 

2 

Finally, GT = 1/2. Thus, 

as was  given. 

4.7 In  the first case, p = 0.7308, Var{pi) = 0.0140, and GT = 0.6066. Thus, 
FST = 0.0713. In the second case, p = 0.7041, Var{pi} = 0.00711, GT = 
0.5833, and FST = 0.03416. It makes  me nervous! 



Chapter 5 

Quantitative Genetics 

Quantitative genetics, an  area of scientific enquiry closely allied to population 
genetics, is concerned with the inheritance of quantitative  characters,  those 
whose states, like weight, height, or metabolic rate, fall on a quantitative scale. 
One of the early triumphs of quantitative genetics was R. A. Fisher's demon- 
stration in 1918 that  the correlation between relatives may be explained by the 
combined action of alleles at many loci, each of relatively small effect. Fisher 
followed in the footsteps of others who, along with Fisher, put to rest the notion 
that different laws of inheritance applied to discrete and  quantitative  traits. 

The two traditional concerns of quantitative genetics are  the correlation 
between relatives and  the response to selection. Both may be investigated by 
either a purely statistical  approach without explicit reference to  the  states or 
frequencies of alleles or from ' a purely genetic approach that does use allele 
frequencies, Hardy-Weinberg, and  other concepts from population genetics. The 
former is particularly valuable for introducing  the main ideas of quantitative 
genetics with a minimum of effort  and will be developed first.  Later,  the second 
approach will be used to explore the effects of dominance on the correlation 
between relatives. 

Our goal is to learn enough of the fundamentals of quantitative genetics to  be 
able to discuss some interesting evolutionary questions that involve quantitative 
traits. 

5.1 Correlation  between  relatives 

Figure 5.1 is an example of the phenomenology that stimulated work in  quan- 
titative genetics. In  this case, the  trait is height and  the subjects are  students 
from an evolution class at UC, Davis and  their  parents.  The left side of the 
figure is a histogram of the heights of the  students in the class. As males and 
females have different average heights, the  data have been adjusted to make the 
two  sexes equivalent. Classically, quantitative genetics is concerned with the 
variation in height rather  than with average height. For example, we might ask: 
How much of the variation in height is due to genes and how much  is due to 
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Figure 5.1: The  left-hand  figure  is  a  histogram of the number  of students of a  particular 
height  in  an  evolution  class at UC Davis. The right-hand  figure  graphs the deviation 
of a student's height  from the population  mean  against the deviation of the student's 
parents'  average  height  from the population  mean. 

environmental effects? How much  is nature  and how much nurture?  Quantita- 
tive genetics is not, in general, concerned with why the average height of the 
students is approximately 67 inches. 

If genes are  important, we might  expect relatives to resemble each other. 
More  precisely, we might  expect  a pair of relatives to look more alike than a 
pair of randomly chosen individuals. The right side of Figure 5.1 shows that  this 
is true for height in our class. The horizontal axis is the  midparent value, which 
is the average height of the two parents.  The values are given as deviations from 
the mean height. A value of -1, for example, implies that  the average value of 
the two  parents was 1 inch  below the mean height of the population. The vertical 
axis is the height of the offspring of the two parents  that make  up the midparent 
value. Here, too,  the heights are deviations from the  population mean.  There 
is a clear relationship between midparent  and offspring. There is also a lot of 
scatter  around  the regression line due, in part,  to Mendelian segregation and, 
in  part,  to environmental influences. The  fact  that large parents  tend to have 
large offspring and small parents  tend to have small offspring argues that there 
is a genetic component to height. But how important is that component? The 
traditional way to pose the question is to ask: Of the  total variation in height, 
what fraction is attributed  to genetic causes and  what fraction to environmental 
causes? The answer  is the  subject of this section. 

To  assess the relative contribution of genes to a phenotype, we require an 
explicit model that  states, however  naively, the way  we imagine a phenotype 
to be  constructed from genetic and  environmental factors. The simplest such 
model,  illustrated in Figure 5.2 in the context of two parents  and  their off- 
spring, posits a single locus that  contributes additively to  the phenotype  and 
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Mom Dad 

P = X , + X , + E  

Figure 5.2: The additive model of inheritance for parents and offspring. 

an  environmental  component that also acts  additively, 

P=X,+X,+E.  (5.1) 

P is the value of the phenotype of an individual expressed as  the deviation of its 
value from the population  mean.  The symbol X ,  refers to  the additive effect 
or contribution of the maternally derived allele to  the phenotype. For example, 
this allele might add 1 inch to  the height of its carrier. If so, then  both  the 
maternal  parent  and  the offspring will be 1 inch taller  because of the additive 
effects of this allele. X ,  refers to  the paternally derived, allele. Its value will, 
in  general,  be different from that of the maternally derived allele. The final 
component is the contribution of the environment, E ,  which is expressed  in the 
same  units  as the genetic  contribution. If  we knew, for example, that X ,  = 2, 
X ,  = -1, and E = 5 ,  then  the  phenotype would be P = 6  units  above the 
population  mean. 

The mean of P must  be zero because  all  phenotypes are expressed as de- 
viations from the population  mean.  While  this may appear  to  be a trivial 
statement,  it is worth  emphasizing, since we will continually use this  fact.  The 
mean values of X,, X,, and E are zero as well.  Were they  not zero, then  the 
mean value of P would not be zero. Using the  notation of expectation, we have 

= ~ { X m }  + E{X,} + E { € }  
= o + o + o = o .  

(If the  expectation  operator E is not  familiar,  read about  it on  page 156.) 
Of course, we cannot know the  actual values of X,, X,, and E for any 

particular  individual. The best we can do is to view these  quantities as random 
variables and  estimate  their moments in the population. To be precise, we will 
assume from henceforth that X,, X,, and E are normally  distributed  random 
variables with  means  equal to zero and variances 
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and 
Var{&} = VE. 

(The peculiar notation for Var{X,} and the justification for the normality 
assumption will be explained shortly.) 

The model captured in Equation 5.1 appears to differ fundamentally from 
those developed in earlier chapters in that alleles are described by their effects 
on the phenotype. Earlier, alleles  were described as genetic entities with fre- 
quencies, but often unspecified phenotypes. In  fact,  the new  model  is really the 
same as  the old. Imagine a locus with n alleles at frequencies p1 , p 2 , .  . . , p ,  that 
contribute z1,52, . . . , x, to  the phenotype. The number of alleles  is imagined, 
to be so large,  and  their frequencies so small, that  the probability of drawing 
the same allele  twice in a finite sample is small. The mean allelic contribution 
of this locus is 

n 

and  the variance of the contribution is 
n 

i=l 

As the mean effect of a locus must be zero, p = 0. The notation for the 
variance of the  the allelic contribution introduced above dictates that u2 = 
vA/2. The normality assumption implies that if  we were to collect all of the 
xi and draw a histogram of their values, that histogram would appear to be  a 
bell-shaped curve. The representation of X in terms of allele frequencies and 
the xi emphasizes that X is a population quantity  rather than  an individual or 
gene-action quantity. xi, on the other  hand, is the phenotypic contribution of a 
particular allele and is not a population quantity. A common conceptual error 
is to regard the additive component as being  solely a function of gene action, 
whereas it is really a function of both gene action as  captured in the xi and  the 
state of the population as  captured in the p i .  

The reader may well balk at the suggestion that  there  are so many alleles 
at a locus and  that their phenotypic contributions  are normally distributed. 
We are making this assumption in order to develop quantitative genetics in the 
simplest context possible. In the last section of this  chapter, we  will  show  how 
the one-locus model  may  be replaced with a more realistic multilocus model, 
where  each  locus  may  have  only a couple of alleles. The normality then comes, 
when the number of loci  is large, from the Central Limit Theorem. 

To take  the first steps in the analysis of this model, we need to use variances, 
covariances, and correlations. If you are  not familiar with these moments, this 
is the time to either read the brief summary beginning on page 160 or consult 
a statistics book (or,  better  yet,  to do both).  Quantitative genetics is  all about 
variances, covariances, and correlations. If these ideas are  not second nature to 
you, then  it is impossible to understand  quantitative genetics! 
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Equation 5.1 may be used to make precise the question about  the relative 
roles of nature  and  nurture. As our interest is in explaining variation in quan- 
titative  traits,  it is quite  natural to begin by calculating the variance of both 
sides of Equation  5.1 (with the help of Equation B.12), 

Var{P} = Var{X,} + Var{X,} + Var{E} 
+ 2Cov{X,, X,} + 2Cov{Xm, E }  + 2Cov{X,, E } .  (5.2) 

The variance in the phenotype is the sum of the variances of the genetic and 
environmental factors  and twice the covariances of these  factors. The covariance 
terms will all be  set equal to zero. The  term Cov{X,, X,} is the covariance 
between the  maternal and  paternal genetic contributions to the  phenotype. As 
the parents are not  related (by assumption),  their genetic contributions are 
independent, which implies that their covariance is, zero.  Cov(X,,E} and 
Cov{X,, E }  are covariances between the genetic and environmental contribu- 
tions and will be assumed to be zero. Were they not zero, we would say that 
there are genotype-environment interactions. For example, if one allele added 
one inch to  the phenotype in a warm environment and  subtracted  one inch in 
a cold environment and  another allele did exactly the opposite,  there would 
be a genotype-environment interaction. Genotype-environment interactions are 
also called norms of reaction. Our only reason for assuming away genotype- 
environment interactions is to make the model simpler. These  interactions  do 
exist in nature  but can be minimized  in the laboratory. 

Without  the covariance terms,  Equation 5.2 may be  written in the much 
more pleasing form 

VP = VA +v . ,  (5.3) 

where 
vp = Var{P} 

is the phenotypic variance, 

VA = Var{Xm} + Var{X,} 

is the  additive variance, and 

V' = Var{E} 

is the environmental variance. The additive variance can also be written  as 

VA = 2var{xp} = 2var{x,} 

because the two parental gametes are chosen at random from the  population 
and, for this reason, are statistically equivalent. The "additive" of additive 
variance refers to  the fact that  the genetic contribution is a simple sum of the 
contribution from each allele. In more complicated situations, the two alleles 
might interact to produce an additional genetic contribution whose variance is 
called the dominance variance (described in Section 5.4). 
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The fraction of the phenotypic variance due to additive effects  is simply 

and is called the heritability of the  trait.* For example, if h2 = 1/2, then one-half 
of the variance in the phenotype' is genetic in origin and one-half  is environmen- 
tal.  The  heritability is  precisely the quantity that answers the  nature-nurture 
question. Its value  is estimated by using the correlation between relatives, as 
we  will  now show. 

We begin with an example of a particularly simple pair of relatives: a single 
parent, mom in this case, and her  offspring. The phenotypes of the parent  and 
offspring  may be written as follows: 

P p = X m + X k + € p  
P o = X m + X p + € o ,  

where the subscripts P and 0 refer to parent  and offspring. The symbol XL 
represents the genetic contribution to  the parent's phenotype from the allele 
that is not passed on to its offspring (Mom's open circle in  Figure 5.2). With 
this formulation, the resemblance between parent  and offspring  is  seen to come 
from the shared allele with phenotypic effect X,, as X m  is the only common 
factor on the right sides of both equations. The other alleles in each, XL and 
X,, are no more alike in phenotypic effect than  are two  alleles drawn at random 
from the population. 

The resemblance between parent  and offspring  is expressed quantitatively 
by the covariance of their phenotypes, Cov{Pp, Po}, which is 

COV{X, + X; + €p, X m  + Xp + €0) = 
Cov{Xm,  Xm} + Cov{Xm,  Xp} + C O V { X ~ ,  X,} + COV{X~,  X p }  
+ Cov{Xm, EO} + C O V { X ~ ,  EO} + Cov{Xm, &P}  + Cov{Xp, € P }  

+ COV{€P, EO}.  (5.5) 

The fact that  the covariance of a sum is the sum of the covariances comes from 
Equation B.14. Although the covariance  looks horrendous, it is important to 
appreciate that conceptually it is quite simple. The covariance between parent 
and offspring must ultimately be due to the covariances  of the additive compo- 
nents of each phenotype. There must necessarily  be a lot of covariance terms 
because there  are  three random quantities  contributing to each phenotype. For- 
tunately, most of these covariances are zero, either by assumption or because of 
independence, as we  will  now show. 

The first line of covariances  on the right side of Equation 5.5 are between 
the genetic contributions to  the phenotypes. The first term in this line is the 
covariance of a random variable with itself, which  is its variance, 

Cov{X,, Xm} = Var{X,} = V A / ~ .  
"Unfortunately, the symbol for heritability is ha, which haa nothing to do with  the het- 

erozygous effects of alleles. 
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The next three covariances are between independently derived  alleles. As these 
alleles are  unrelated, the covariances of their effects are zero. 

The next line has covariances  between a genetic effect and an environmen- 
tal effect; they are zero because of our previous assumption of no genotype- 
environment interactions. 

Finally, we come to  the thorny Cov{&p, Eo}, which  is the. covariance of the 
environmental effects of parent  and offspring. This,  too, will be set equal to 
zero, but  not without some  misgivings. Often, the environments of parents  and 
offspring are more similar than  are those between randomly chosen individuals. 
This is certainly true for humans, where geography, socio-economic class, level 
of education,  and a myriad of other causes of common environments occur. 
Common environments will cause relatives to resemble each other more than 
they would otherwise. As a consequence,  common environments may  give an 
experimenter an inflated view  of the role of genetics in the determination of the 
trait. In laboratory  situations, the common environment can be minimized and, 
as most quantitative genetics experiments are done in the laboratory, will be 
set to zero here. 

The expression for the covariance of parent  and offspring  is now the remark- 
ably simple 

The covariance  between parent  and offspring  is  one-half the additive variance. 
The presence of the additive variance is traceable to  the fact that  both  the 
parent and offspring share the allele with value X, ,  whose variance is v,/2, 

The correlation coefficient  between a  parent  and  its offspring  is obtained 
by dividing both sides of Equation 5.6 by Vp and using the definition of the 
correlation coefficient  given on page 161, 

(In the second  line we used the fact that  the phenotypic variances of any set of 
unrelated individuals are  the same. Thus, the phenotypic variance of parents is 
the same as that of offspring.) The correlation is an increasing function of the 
additive variance. For a fixed VE, the larger the additive variance the greater the 
resemblance  between relatives. Without genetic diversity, relatives would  look 
no more alike than random pairs of individuals. With genetic diversity, they 
resemble each other because their shared alleles are more similar than random 
pairs of alleles. 

Problem 5.1 What is the  heritability of a trait with V .  = 2 and VE = 3? What 
is the correlation between parent and offspring for this trait? 
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The next  task is to find the correlation between an  arbitrary  pair of relatives, 
X  and Y, whose phenotypes are determined by the two equations 

P x = X , + X , + E x  
&=Y,+Y,+Ey. 

If we charge ahead, ignoring all genotype-environment interaction and common 
environment terms, we obtain 

COV{PX, f i }  = COV{X,,  Y,} + cov{x,,Yp} 
+ COV{Xp,Ym} + cov{xp, Y,}. (5.7) 

The values of the covariances depend on the average number of shared alleles 
between the relatives. Figure 4.2 indicates the possibilities. With probability T O ,  

the two relatives share no identical-by-descent alleles and all of the covariances 
in Equation 5.7 are zero. With probability T I ,  the two relatives share one pair 
of identical-by-descent alleles, in which case only the covariance corresponding 
to  the  shared allele  will  be non-zero, and  its value  is v A / 2 .  (Note that this case 
is  like parent  and offspring, for  which T I  = 1.) Finally, the relatives could share 
two identical-by-descent alleles. In this case each pair of identical-by-descent 
alleles  yields one non-zero  covariance of magnitude v A / 2 ,  so the full covariance 
when there  are two pairs of identical-by-descent alleles  is VA. Considering all 
three contingencies, the covariance  between relatives X and Y is 

coV(Px,&) = ?‘g x o + T l  x - + T 2  x VA VA 
2 

or, using the coefficient of relatedness defined  on page 89, T = (r1/2) + ra, 

The correlation between the relatives is obtained by dividing both sides of Equa- 
tion 5.8 by the phenotypic variance, 

In words, the correlation between a pair of relatives is equal to  the coefficient of 
relatedness times the heritability. This is certainly one of the most satisfying of 
answers to an ostensibly difficult problem in all  of biology. In his 1918 paper, 
R. A. Fisher derived the correlation between relatives as a series of special cases 
for many representative pairs of relatives. The general form of the correlation, 
of which Equation 5.9 is a special case, was derived in the 1940s by Gustave 
Malecot and Charles Cotterman. 

Problem 5.2 What is the correlation between  each of the pairs of relatives in 
Table 4.1 if VA = 2 and VE = 3.  
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Species Character  Heritability 
Honeybee oxygen consumption 0.15 
Eurytemora  herdmani length 0.12 
Cricket wing length 0.74 
Flour beetle fecundity 0.36 
Red-backed salamander  vertebral count 0.61 
Darwin's finch  weight 0.91 
Darwin's finch  bill length 0.85 

Table 5.1: Heritability  estimates  determined by parent-offspring  correlations for a 
variety of traits and  species  taken from a paper by  Mousseau and Roff (1987). 

Heritabilities are easy things to measure. As a consequence, the  literature 
is  full of heritability  estimates for almost any trait you can imagine. Table 5.1 
gives a sample of heritability  estimates from an interesting  paper by Timothy 
Mousseau and Derek Roff (1987). Two important generalities emerge from 
heritability studies. The first is that almost all traits have heritabilities between 
0.1  and  0.9. In other words, between 10 and 90 percent of the phenotypic 
variation seen in most quantitative  traits is genetic in origin, an observation 
that echoes the ubiquitous variation seen in DNA and  proteins  and poses yet 
again the question of  why so much genetic variation exists. 

The second generalization is that life history traits, like viability, longevity, 
and fecundity, tend to have lower heritabilities (average h2 = 0.12) than do be- 
havioral traits (0.17), which tend to have  lower heritabilities than morphological 
traits (0.32). The reason for this  pattern is obscure. Life history traits could 
have  lower heritabilities because of lower additive variances or because of higher 
environmental variances. The folklore of our field claims that life history traits 
have lower additive variances because they are closely tied to fitness and that 
natural selection quickly and efficiently  removes additive variation in fitness. 
However,  Dave  Houle  (1992) recently showed that life history traits actually 
have higher additive variances than other traits. Apparently, life history traits 
have lower heritabilities because the  joint  contributions of environmental, dom- 
inance, and  epistatic variances are much larger than those  in  other traits. So 
much  for  folklore! 

Closely related to our discussion of the correlation between relatives is the 
answer to  the following question: If the phenotype of relative X is PX = z, 
then  what is the expected phenotype of relative Y? For example, if I knew 
that  the average height of a student's  parents was 72 inches, what would be 
the expected height of the  student?  The answer comes immediately from the 
regression coefficient as described on page 165. The regression coefficient  is the 
slope of the ('best fit" line illustrated in Figure 5.1  and  again in Figure 5.3. The 
line, which  is forced CO pass through the origin, is fit to  the  data by the  method 
of least squares, which minimizes the  squared deviation (measured vertically) 
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I slope = rh2 

Figure 5.3: The use of regression to find the  expected value of the phenotype of relative 
Y given  that  the  phenotype of relative X is x. 

of each point from the line. The slope of the regression line is 

using the definition of the regression  coefficient in Equation B.17 and Equa- 
tion 5.8. Thus,  the regression of one relative on another is the same as the 
correlation coefficient of the relatives. 

Equation B.18 shows immediately that  the expected value of relative Y, 
given that  the phenotype of relative X is x, is 

E { P y  I Px = x} = PS = rh2x, 

where, as usual, all measurements are expressed as deviations from the mean.* 
Figure 5.3 summarizes the relationship of the mean of P y  given PX = x. Note 
that  the above relationship holds only if the  trait is normally distributed. 

The most important implication of this result is that  the Y relative is  always 
closer to  the population mean, on average, than is the X relative because both 
r and h2 are less than one (in  most situations). The movement of the mean 
of relative Y toward the population mean is called the regression toward the 
mean. It occurs because a pair of relatives share only a portion of their alleles. 
The rest are obtained at random from the population. Thus, the mean of one 
relative, given the value of the  other, must move toward the population mean. 

Finally, we can return to  the  data of Figure 5.1 to answer the question: 
What is the heritability of height? One of the “relatives” in the figure is a 
midparent, which  is the average of the phenotypes of the two parents of each 
student. Consequently, we cannot use the results developed thus  far without 

*The  notation ‘I’ stands for “given”  and refers to the  assumption  that  the  value of Px is 
known. 
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Parent-offspring Midparent-offspring General 
Covariance VA /2 vA/2 TVA 
Correlation h2/2 h 2 / a  r h2 
Regression  coefficient h2 l2 h2 rh2 

Table 5.2: A summary of the measures of resemblance  between pairs of relatives. 

some  minor modifications. The covariance of midparent and offspring  is 

just as it is  for one parent  and offspring.  However, the variance of midparent is 
smaller than  that of a single parent, 

By Equation B.8, the correlation of midparent and offspring  is 

Similarly, the regression of offspring  on midparent is 

(5.10) 

which  is not the  same as the correlation coefficient  for normal pairs of relatives. 
Table 5.2 is a handy summary of the various measures of relationship between 
midparent and offspring and those of other pairs of relatives. 

Problem 5.3 The correlation coefficient for the  data of Figure 5.1 is 0.476. 
What is the  heritability of height? If one paxent's height were 3 inches above 
the  population mean and  the other's were 1 inch above, what would  be the 
expected deviation of the height of their child  from the  population  mean? 

Problem 5.4 The following measurements of  weights are from a single parent 
and  its offspring and  are expressed as deviations from the mean. What is the 
heritability of this trait? 

(-0.002, -0.391)  (1.566,1.747)  (0.542,  -2.127)  (-0.285,  -1.623) 
(-1.519,  -0.876)  (-1.136,  -0.705)  (0.907,0.458)  (0.435,  -0.287) 
(1.292,0.153)  (-0.640,0.711) 
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Figure 5.4: The results of a selective breeding  experiment  for  abdominal bristles in 
Drosophila. The upper  lines  give the number  of bristles during  five generations of 
selection for a  greater  number  of  bristles  in  five  replicate lines. From. generations 6 to 
24 there was no selection. The five lower lines  give the results of selection for  fewer 
bristles. The data are  from Clayton et  al. (1957). 

5.2 Response to selection 

Agriculturalists, from prehistoric times until the present, have improved their 
crops and livestock by selective breeding: simply  choose the best individuals as 
parents of the next generation. And it works, providing that  there is additive 
variance for the  traits of interest.  But how  well does selective breeding work? 
Will there be a significant change in the mean value of a trait in a few gener- 
ations, or are hundreds or  even thousands of generations of selective breeding 
required? The answer  is the main goal of this section. 

Natural selection on quantitative traits is  like selective breeding in that more 
adaptive morphologies are more likely to leave behind offspring than  are less 
adaptive morphologies. In Chapter 3 we saw how fitness differences  between 
genotypes change allele frequencies. Here, we will  see how fitness differences 
between  morphologies change the distribution of morphologies. Surprisingly, 
we can do this, at least approximately, without explicitly describing changes in 
genotype frequencies. 

Figure 5.4 illustrates a typical selective breeding experiment. In  this case the 
character is the number of bristles on the fourth  and fifth abdominal  sternites 
in Drosophila  melanogaster. Bristle number in Drosophila has been studied 
for years simply because it is easier to count accurately the number of bristles 
under a microscope than  it is to determine more universal quantitative  traits 
like  weight or length.  The  graph shows the mean number of bristles in  lines 
selected for  high  or low numbers of bristles for  five generations. Five replicates 
lines, (the  upper five), were selected for  high bristle number and five (the lower 



5.2 Response to  selection 115 

five)  were selected for low bristle numbers. The selection was performed by 
counting bristles on 100 males and 100 females  in  each line and  then choosing 
for parents the 20 males and 20 females with the highest and lowest numbers 
of bristles for their sex. After  five generations, selection was stopped  and the 
bristles were not counted again until generation 24. 

The selection experiment WM obviously  successful  in that  the number of 
bristles increased steadily in the high  lines and decreased steadily in the low 
lines.  After  five generations, a typical fly in the high  lines had about 13 more 
bristles than  the original population, while the low lines had  about 7 fewer 
bristles. This asymmetry in the response to equal selection in  both directions 
is  seen in almost all selection experiments. 

After  five generations, selection was relaxed and  the number of bristles moved 
back toward the number in the original population. This,  too, is typical of other 
selection experiments. One possible explanation is that there is an optimal 
number of bristles and  that  natural selection  moves the population back toward 
the optimum once artificial selection is stopped. Another possibility is that 
the alleles  whose  frequencies increased in the population as a result of selective 
breeding have pleiotropic deleterious effects or are linked to deleterious alleles. 
Once artificial selection stops,  natural selection acts on these pleiotropic, or 
linked, factors. 

Our first task is to find a  quantitative description of the expected progress 
of selection in a typical selective breeding experiment. The framework for the 
discussion  is illustrated in Figure 5.5.  The  starting  point,  the  top curve, is a 
population of potential  parents whose phenotypes are, by assumption, normally 
distributed. From this  population,  a group of individuals are chosen to serve as 
parents for the next generation. The usual practice is to pick a fixed number of 
individuals to measure and  then choose a fixed proportion of these as parents. 
For example, in the Drosophila experiment 100 individuals of each sex were 
measured and  the  top  and  bottom 20 percent were  chosen as  parents. The 
chosen parents  are  then  put  into male-female pairs and  the midparent value of 
each pair is noted.  The mean midparent value of the selected parents, expressed 
(as always) as  the deviation from the population mean, is  called the selection 
differential and is notated by S. 

The  distribution of the offspring of the selected parents is illustrated in the 
next line of the figure. As the mean of the selected parents is larger than  that 
of the potential  parents, the distribution of the offspring  is shifted to  the right. 
The deviation of the offspring mean from the potential  parent mean is called 
the selection response and is notated by R. 

What is the relationship between the selection differential, S, and the selec- 
tion response, R? On page 113 we argued that  the regression of offspring on 
midparent is the heritability. It follows that  the mean value of the offspring of 
a mating with midparent value PMP = x is h2x. In  the selection experiment, 
there  are several pairs of selected parents, each with its own midparent value, 
say xi for the  ith pair of parents.  The expected phenotype of the  ith pair of 
parents is thus h2xi. In a selection experiment with n pairs of parents, the 
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Figure 5.5: The response to selection. 

expected phenotype of the offspring  is 

The  term on the left side is the average expected value of the offspring (expressed 
as a deviation from the parental  mean), which  is the selection response, R. The 
sum on the right side is the average value of the phenotypes of the selected 
parents, or the selection differential, S. In other words, the selection response 
is simply 

IR=h2SI  (5.11) 

If the heritability of a trait is one-half, then the response of one generation 
of selection is to move the population mean halfway  between its value  in the 
parental generation and  the mean value of the selected parents. 

section: How  well does selective breeding work?  Like the equation for the cor- 
relation between relatives, it is a remarkably simple  answer to an ostensibly 
difficult question. However,  while R = h2S is an  accurate description of the 
response to selection in a single generation, it is not necessarily an accurate 
predictor of the'progress of selection over several successive generations because 
each generation of selection changes h2 in  ways that  are impossible to predict. 
We  will return to this problem after discovering another way to write the selec- 
tion differential. 

When designing a selection experiment, it is often useful to know the propor- 
tion of parents needed to obtain a particular selection differential. In  fact,  the 
Drosophila bristle-number experiment described at  the beginning of this sec- 
tion was couched entirely in terms of the proportion selected. We cannot  relate 
that experiment to Equation 5.11 without first finding a connection between the ,: 
proportion selection and  the selection differential. In Figure 5.5, the  proportion 
selected is the  area of the shaded portion of the distribution of parental pheno- 
types. The mean value of the shaded portion is the selection differential. The 

Equation 5.11 is the answer to the question posed at the beginning of this . 
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Figure 5.6: The intensity of selection, i, as a function of the proportion of individuals 
used as parents, p .  

connection between the two  is  given  by the formula 

S = G ib ) ,  (5.12) 

where the function i(p), which  is illustrated in Figure 5.6, is  called the intensity 
of selection. The derivation of i(p) is  given  in Section 5.5. Equations 5.11, 
and 5.12 together give a new equation for the response to selection, 

R = h2i(p)&, (5.13) 

which  is particularly convenient  for  many applications. 
The 1957 paper by  George Clayton, J. A. Morris, and Alan Robertson, 

which provided Figure 5.4, also provided one of the first demonstrations that 
Equation 5.13 can accurately describe the response to selection in favorable 
experimental settings. Clayton et al. did this by estimating the heritability and 
phenotypic variance of bristle number and  then checking how  well Equation 5.13 
predicts the progress of.selection for  different fractions of selected individuals. 
The results are given in Table 5.3 and Figure 5.7. The heritability for bristles 
is about h2 = 0.52, and  the phenotypic variance, an average of the male and 
female variances, is Vp = 11.223, so f i  = 3.35. For the first line in the  table, 
where the intensity of selection is 1.40, the predicted response to selection is 

R = 0.52 X 1.40 X 3.35 = 2.42, 

which  is  close to  the observed change upward of 2.62 bristles per generation. 
The response to selection for other values of the intensity of selection in the 
high  lines  is also in rough agreement with the theoretical predictions. But  what 
about the low lines?  Note that there is nothing in our theory that  treats up 
and down selection differently. Thus, the down line should decrease by about 
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p i(p) Predicted Observed up Observed down 
20/100  1.40 2.42 2.62 1.48 
20/75  1.24 2.14 2.20 1.26 
20/50  0.97 1.68 1.46 0.79 
20125  0.35 0.61 0.28 -0.08 

Table 5.3: The  predicted  and  average  observed  change  in the number of bristles in 
Drosophila in a single  generation  for  different  intensities of selection. 

2.42 bristles per generation for the highest intensity of selection. In  fact,  it de- 
creased only  by 1.48 bristles. The  authors of the paper are at a loss to explain 
this discrepancy. They do point out  that  the observed change per generation 
is obtained by averaging the changes for  each of the five generations. In the 
cwe of the low lines, they  argue that  the response to selection declined after 
the first couple of generations of selection and, by implication, that h2 declined. 
However, there is little  support for this explanation i,n Figure 5.4, where the 
low lines appear to decrease linearly for all five generations of selection. Other 
possible explanations include the possibility that  natural selection' opposes ar- 
tificial selection for  lower bristle numbers or that  there is a scaling effect due to 
an asymmetry in the  distribution of additive effects on bristle number. 

The suggestion that heritabilities decrease during selection points  out one of 
the major obstacles to using Equation 5.13 to predict the response to selection 
for more than a few generations into the future. Each generation of selection 
changes the genetic structure of the population by changing allele frequencies 
and  the associations of alleles  on  chromosomes. As a consequence, the additive 
variance and  the heritability  are likely to change and, with them,  the response 
to selection. Unless there is  some reason to believe that heritabilities remain 
relatively constant,  perhaps because selection is  very  weak and  mutation is 
restoring  any lost variation, one should not use Equation 5.13 to predict events 
after the first few generations of selection. 

The brevity of this section shows how simply the response to selection follows 
from the regression of offspring on midparent. However, it belies the consider- 
able complications that arise in actual selection experiments. For a thorough 
treatment of the response to selection, there is  no better place to  turn  than 
Douglas  Falconer's Introduction,  to Quantitative Genetics (1989). 

5.3 Evolutionary quantitative genetics 

Quantitative  traits pose the same sorts of evolutionary questions as  do dis- 
crete traits.  Just as we puzzled  over ubiquitous molecular variation-our Great 
Obsession-we should wonder why there is so much genetically determined vari- 
ation in quantitative traits. Similarly, arguments over the  strength of selection 
acting on molecular variation have their  counterparts in arguments over the 
strength of selection acting on quantitative  traits.  In  this section, we will just 
brush the surface of these questions, which are not nearly as well posed  for 
quantitative  traits as they  are for molecular variation because we do not un- 
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Figure 5.7: The results of selection of different  intensities for bristle  number in 
Drosophila. The upper  four  curves are averages of three to five lines  selected for 
higher numbers of bristles  with the proportion  selected as given  in the figure. The 
lower  four curves are for  selection for fewer numbers of bristles. The data are from 
Clayton et al. (1957). 

derstand the genetic basis of quantitative variation.  This difference is offset 
somewhat by the fact that  quantitative  traits  are under much stronger  selection 
than  are molecdlar traits, making it easier to  guess the adaptive value of many 
quantitative  traits. 

Quantitative genetics has been used to reconstruct the selective forces acting 
on quantitative  traits.  The basic  idea is to  turn our  previous discussion on 
its head by using the selection response to  estimate  the selection differential. 
An interesting  example is in a paper by Russ  Lande (1976), which examines 
selection on  paracone  height  in fossil horses. In the course of their  radiation 
from the Eocene to  the Pleistocene, horses moved from  eating leaves in  forests 
to  eating grasses in plains. As eating  grasses wears down teeth  faster  than  eating 
leaves, horses evolved higher ridges, called paracones,  on  their teeth. Table 5.4 
summarizes  some of the relevant facts of the evolution of paracone  height. The 
change in paracone height over an interval of time of length T is called RT. The 
ratio of RT to  the phenotypic standard  deviation, f i , for pairs of species is 
given in the second column of Table 5.4. The time of separation of the pairs is 
given in the  third column. 

Let us assume that  the increase in paracone height was due to  a constant 
directional selection pressure and  try  to find the  strength of selection. The 
selection response  may be calculated by first  rearranging  Equation 5.13 to  

The response per  generation,  assuming that a horse  generation is one  year, is 
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From  species to species T l-P 
Hymcotherium to Mesohippus 10.6 10 x 106 4 x 10-7 
Mesohippus to Meryehippus 25.6 5 x 106 2 x 10-6 
Merychippus to Neohippus 7.8  1.75 x lo6 2 x 
Hyracotheriurn to Neohippus 44.0  16.75 X lo6 1 X lo-' 

Table 5.4: The  fraction of selective  deaths, p ,  required  to  account for the evolution of 
paracone height  in  horses  under the assumption of directional  selection. 

obtained by dividing the  total difference  in paracone height by the length of. 
separation, T, R = RT/T. The heritability of paracone,height is assumed to be 
one-half, a typical figure  for  morphologic traits.  Thus,  the intensity of selection 
becomes 

The parameters on the right side may be obtained from Table 5.4 to arrive 
at  the intensity of selection. For example, from the first line the intensity of 
selection is 

i(p) = ~ x - - 2.12 x 10-6 
107 

The value of p corresponding to  the intensity of selection could, in principle, 
be obtained from Figure, 5.6. However, the resolution of the  graph for such a 
small intensity of selection is not sufficient. The values of 1 - p ,  obtained by 
Lande using approximations to  the integrals appearing in the definition of the 
intensity of selection, are in the final column of Table 5.4. 

The values of 1 -p ,  which are  the  proportion of horses not included as parents 
each generation, suggest that only about one to four horses of every million  need 
suffer a selective death in order to evolve paracone height at the  rate seen in the 
fossil record. This is incredibly weak selection! So weak, in fact, that genetic 
drift could well dominate selection. Does this mean that we should entertain 
drift aa a candidate to explain the evolution of paracone height? Perhaps,  but 
a much more profitable direction is to  accept'that our assumption of constant 
directional selection is unrealistic. Paracone height is probably under stabilizing 
selection for an optimum height that is determined by, among other  factors, the 
time  spent feeding  on grasses and the  nature of the grasses. The optimum itself 
will  slowly change upward as the grasslands .begin to dominant the landscape. 
Instead of a picture of an excruciatingly slow response to a distant selective 
goal, we picture very strong selection keeping the species right at the optimum 
paracone height. Under this hypothesis, the slow increase in paracone height is 
due to  the slow change in the optimum rather  than to a slow response to very 
weak selection. 

The investigation of paracone height poses the questions: How fast have 
quantitative  traits evolved in the fossil record? How do these  rates of evolution 
compare to rates observed under artificial selection? Is the  rate of evolution of 
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Number Time interval Rate (Darwins) 
Selection experiments 8 3.7 yr 58.700 
Recent colonizations 104  170  yr 370 
Post-Pleistocene mammals 46 8200 yr 3.7 
Fossil vertebrates 228 1.6 MY 0.08 
Fossil invertebrates 135 7.9 MY 0.07 

Table 5.5: Rates of morphological evolution. The time intervals are measured  in either 
years (yr) or millions of years (MY). The table is from  Maynard Smith (1989). 

paracone height typical or unusually fast or slow? J. B. S. Haldane, one of the 
pioneers of population genetics, proposed that rates of phenotypic evolution be 
quantified by 

k h  = 10g(52/q)/T Darwins. 

In this expression, 11 and 5 2  are measures of some trait for  two species on the 
same lineage that  are separated by T million years. The  units of kh are called 
Darwins. For example, the paracone height of Hyracotherium is $1 = 1.54 and 
of Mesohippus is 52 = 2.12. As these two horses are separated by  20 million 
years, the  rate of paracone evolution is 

log(2.12/1.54) 
20 

k h  = = 0.016 Darwins. 

Table 5.5 lists some summary rates of evolution for various situations. 
The most striking feature of the  table is that  the  rate of evolution in selection 

experiments is at least two orders of magnitude faster than any rate seen in 
nature or the fossil record. The  fastest  rates in nature  are for recent colonizers, 
which might be expected to evolve  quickly to  adapt  to their new environments. 
Paracone height is clearly evolving  very  slowly compared to what is possible 
in the  laboratory or  even what is  seen as the fastest  rates in nature.  This 
lends support to  the view that  the evolution of paracone height is due to a 
slowly changing optimum rather  than directional evolution to a radical new 
environment. Thus, when considering the applicability of selection theory to  the 
fossil record, one should never assume that  the selective forces  have remained 
constant for appreciable periods of time. 

The Lande paper is a quantitative genetics analogue to  the  study of rates 
of molecular evolution. Similarly, there is a quantitative genetics version of the 
Great Obsession:  Why  is there so much genetic variation for quantitative  traits? 
The  study of quantitative genetic variation is  very similar to  that of molecular 
variation. As a first step, for example, one might try  to find the amount of 
quantitative variation introduced each generation by mutation  and the amount 
removed  by genetic drift to see if the equilibrium determined by these two forces 
is compatible with observed  levels of quantitative variation, just  as Kimura  and 
Ohta did for molecular variation. 

A seminal paper on quantitative genetic variation is a short work  by George 
Clayton and Alan Robertson published in 1955. Their main interest was the 
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extent to which mutations may contribute to  the overall response to selection in 
experiments like that of Clayton, Morris, and Robertson described in the previ- 
ous section. Before their  paper, the relative roles of allele frequency change and 
mutational  input to  the selection response were not well understood theoreti- 
cally or empirically. We begin by first describing the experiment and  its analysis, 
and  then we  will discuss its implications. for the question of the maintenance of 
variation. 

The experiment used a straightforward selective breeding protocol. The 
only  novel feature was the initial population, which  was nearly homozygous 
because of many generations of brother-sister mating.  With so little  initial 
variation, the response to selection should be due, in large part,  to newly arising 
mutations affecting bristle number. High and low lines  were selected by  choosing 
the 10 most extreme individuals out of 25 for each sex, which  gives i(0.4) = 
0.94 for the intensity of selection. Such selection continued for 14 generations. 
By averaging the high and low lines across all 14 generations, Clayton and 
Robertson concluded that  the average response in one generation of selection 
was R = 0.027 bristles. Using Equation 5.13 and  their  estimate that Vp = 4.41, 
the average additive variance over the 14 generations is 

- 
V A  = 0.06, 

where the bar over VA is a reminder that  this is an average over generations. 
In  the course of the experiment, genetic drift removes additive variance at a 

rate of 1/(2N), and  mutation  augments  the  additive variance by an amount V, 
each generation. V, is the quantity that we want to estimate.  Thus, the model 
for the evolution of VA during the 14 generations is, 

(5.14) 

which appears in the  text of the paper at  the  top of page 155, albeit with 
different notation. We  will not derive this  equation,  although it should be in 
accord with your intuition. In each generation, genetic drift reduces the additive 
variance by the factor 1 - 1/(2N), just as heterozygosity is reduced by this factor 
when discussing molecular variation. In each generation, mutation  augments the 
additive variance by V,, which  is analogous to  the mutational input, 2Nu, of 
molecular variation. 

Equation 5.14 can be solved iteratively, once we know the'additive variance 
that was present at  the  start of the experiment, VA(O), The  authors chose not 
to estimate VA(O) directly, but  rather  to argue that additive variance is at an 
equilibrium between its removal by inbreeding (brother-sister mating)  and  its 
introduction by mutation. Brother-sister mating removes variance at the  rate 
0.191. (The calculation of this number may be found on page 260 of Dan Hart1 
and Andy Clark's 1989 textbook.)  Thus, at equilibrium 

0.1911/A(O) = v,, 
or VA(O) = 5.2Vm. 
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Equation 5.14 may now be iterated to find the additive variance in successive 
generations. For generation 1, 

using a population size of N = 20, for  which 

1 1"- 2N - 0;975. 

The next generation is 

VA(2) = 0.975 X 6.07Vm + Vm = 6.92Vm. 

Continuing in this way, V ~ ( 1 4 )  = 15Vm. The average additive variance (add  up 
the VA(~)  and divide by 14) is 

- 
VA = lOVm = 0.06, 

from which we conclude that Vm = 0.006. In a typical Drosophila population, 
VA = 5. Thus,  mutation  augments  the  additive variance by about 0.006/5, or 
0.1 percent its value each generation. 

Clearly, the  mutational  input  to  this particular  quantitative  trait each gen- 
eration is  very small. To account for the observed value of VA in natural popu- 
lations, we must invoke a very  weak  force to remove the variation. Genetic  drift 
is always a good candidate for a weak force, providing that we are willing to 
accept that bristle number is a neutral  trait. If so, we can use Equation 5.14 to 
argue that  the equilibrium additive variance will satisfy 

which  gives 
= 2NVm. 

Recalling that Vm/V, = 0.001, we must conclude that  the effective size of 
Drosophila is 500, an absurdity. The additive variance in natural populations 
is far less than  that predicted by this model. 

Where did we go wrong?  Many evolutionists would argue that bristle  number 
is not a neutral  trait.  Rather,  there is an optimum number of bristles, and 
mutations that move a fly away from the optimum are selected against.  This 
would have the effect of lowering the additive variance well  below that predicted 
by the  neutral models. Others would argue differently. They would say that 
bristle number really is a  neutral  trait,  but  that mutations changing the numbers 
of bristles affect other traits  as well, and  these  other traits  are under selection. In 
this case, there is selection against bristle mutations because of their pleiotropic 
effects. Currently, we do not know  which of these two explanations is closer to 
reality;  perhaps  neither is accurate,  and some other  set of forces  is maintaining 
additive variance. 
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5.4 Dominance 

This final section introduces an approach to quantitative genetics based on only 
two  alleles at a locus rather  than  the large number of alleles  used in Section 5.1. 
There  are two immediate benefits. The first is that dominance may be included 
in a'way  that more nearly fits our biological sense of dominance than would be 
possible with the statistical approach of the first section. The second  is that 
we  will be able to show that  the genetic contribution to  traits affected by many 
di-allelic loci, each of small effect, is approximately a normal distribution.  Thus, 
this section could  be  viewed as a genetically based justification for the approach 
taken in the first section. 

With dominance, the linear model  for the construction of a phenotype is 

P = X , + X p + X m , + E ,  

where the new term, Xmp,  captures the dominance relationships between the 
maternally and paternally derived alleles. If VD is the variance in X m p ,  then, 
assuming that  the additive and dominance contributions  are  uncorrelated, 

Vp = VA + V .  + VE. 

There is  no  obvious reason why the additive  and dominance contributions should 
not be correlated. In fact, a little reflection  shows that we haven't said precisely 
what is meant by the additive  and dominance contributions. The confusion  will 
be cleared up in this section. We  will show that  the additive effects are chosen in 
such a way as to maximize their  contributions to the phenotype while assuring 
that  the additive effects are uncorrelated with the dominance effects, 

To start, we need to define the contributions to  the phenotype made by a 
single locus with two  alleles: 

Genotype: AIAI &A2 A2A2 
Frequency: P2 2Pq q2 
Genotypic value: all a12 a22 
Additive value: 2al a1 + a2 2a2 

The genotypic values are  the contributions of the genotypes to  the phenotype 
expressed as deviations from the population mean. Consequently, the mean of 
the genotypic values must be zero, 

P all + 2pqa12 + q2a22 = 0. 

The additive values of the  three genotypes are values that come ~ 1 s  close M 

possible to making this locus one with no dominance. The additive values 
depend of the genotypic values and  the allele frequencies. They will be derived, 
shortly. For now, we  will note only that  the additive values are expressed as 

, deviations from the population mean, so the mean of the additive  effects must 
be zero as well, 

2 

p22a1 + 2pq(a1 + a2) + q22a2 = 2a1p + 2a2q = 0. (5.15) 
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-4 

Figure 5.8: An illustration of the relationship between  genotypic  values, the open 
circles, and additive  values, the closed  circles,  for the case all = 4, a12 = 2, a22 = -4, 
and p = 0.38197. 

The variance of the genetic  contribution to  the phenotype, the genetic  variance, 
is 

VG = p2a:, + 2pqa2, + q2az2, (5.16) 

recalling that  the mean the genotypic values is zero. The  additive variance is 
given  by 

where the derivation of the final form requires  Equation 5.15. At this  point, 
however, we do not know the additive values (ai is function of aij and p ) ;  we 
will return  to VA once we do. 

The  method for finding the  additive values is illustrated  in  Figure 5.8. The 
horizontal  axis  is the number of A1 alleles in the genotype. With each new A1 
allele, the additive value of the genotype is increased by a1 , a s .  illustrated by the 
sloping line. The deviation of the genotypic values from the additive values is 
illustrated by the vertical lines connecting the two. The equation for the line is 
obtained by minimizing the mean  squared  deviation of the line from genotypic 
values, 

coupled with the previous  assumption that  the mean of the additive effects is 
zero. Finding a best-fit line by minimizing the squared  deviation  is called the 
method of least  squares.  The  advantage of this  particular  method is that  the 
additive and dominance effects are  uncorrelated,  as you  will show in a  problem 
once you have all of the requisite  formulae. 
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The additive effects are found  by  minimizing Q(a1, a2) using the usual 
method of setting the derivatives of Q equal to zero, 

Both equations are readily simplified by first isolating the mean additive effect, 
pal + qap, and  setting  it equal to zero and  then dividing the first equation by 
-4p and  the second equation by -4q. The resulting equations may be solved 
to obtain 

(5.18) 
(5.19) 

Problem 5.5 Confirm that  the mean additive effect is zero using the above 
expressions for a1 and a2. 

The additive values  may now be substituted  into  Equation 5.17 to obtain 
the additive variance in terms of the genotypic values, 

VA = 2Pq[p(all - a121 -k q(a12 - a22)I2. (5.20) 

Finally, the dominance variance is obtained by subtracting the additive variance 
from the genetic variance, 

VD = VG - VA = p2q2(all - + a22)’. (5.21) 

Thus, we have ‘completed our partitioning of the  total genetic variance into 
additive plus dominance components, 

VG = VA +VD.  (5.22) 

Problem 5.6 Show that a locus without dominance has VD = 0. Construct an 
example of a locus with VA = 0 but V’ > 0. 

The next step is to find the genetic contribution to  the covariance between 
an  arbitrary  pair of relatives. The approach is mundane,  but the algebra is 
cumbersome. Recall from  page 161 that  the covariance between two random 
variables is 

TPajxdVj- 
i j  

In our case, the random variables are  the genotypic values of relatives X and 
Y as summarized in Table 5.6. For example, the first line gives the pertinent 
data for a pair of relatives, both of whom are AlAl.  The contribution of this 
locus to  the phenotype of both relatives is al l .  The frequency of this pair is 
the probability that X is A1 AI, p2, times the probability that Y is A1  A1 given 
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Genotypes Values 
X Y X Y  Frequency 

Table 5.6: All possible  pairs of relatives  needed for the calculation of the covariance 
between relatives. 

that X is A1 Al .  The  latter probability is sum of the probabilities of three 
mutually exclusive events. The first event is when X and Y share no  identical- 
by-descent alleles, T O ,  times the probability that Y is A1 A1 given that  it shares 
no identical-by-descent alleles with X ,  p2. The probabilities of the  other two 
events are  obtained  in a similar  fashion, as  are  the  rest of the frequencies in the 
table I 

The covariance is calculated by adding up nine  terms,  each of which is the 
frequency of a pair  times the  product of the two values of that pair. The sum 
is simplified by considering, in turn,  the coefficients of the ra. The coefficient of 
ro is 

(p2a11 + 2pqa12 + q2a22)2, 

which is just  the  square of the average  genotypic value, which is zero. 

equation 5.18, is 
The coefficient TI ,  after  a  modest  bit of algebra that requires the use of 

pa: + W;, 
which, by Equation 5.17, is VA/2. Finally, the coefficient of 7-2 is, from  Equa- 
tion 5.16, Vi .  Taken  together,  these  calculations show that 

cov{pX,&} = (T1 /2 )vA + TZVG, 

or 

When  there is no  dominance, this is the same  as  Equation 5.8, which was ob- 
tained by a different method. In fact,  the two derivations share one  critical 
feature:  they  both  make explicit use of the resemblance that comes from shar- 
ing identical-by-descent alleles. 
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Genotype F’requency X m   X ,  Xmp 
A1 A1 P2 QI QI a l l  - 2 ~ 1  
A1 A2 P9 QI QZ a12 - Q I  - a 2  

A2A1 P9 Q2 Q1 a12 - Q 2  - Q 1  

A2A2 g2 ~2 m a22 - 2 ~ 2  

Table 5.7: All possible ways to make a genotype. 

Problem 5.7 Suppose the correlation between full sibs is 5/24 and  that between 
half sibs is 1/12. If  the  phenotypic variance is 6, what are  the values  of VA and 
VD ? 

In Section 5.1, we assumed that there was no dominance and used the model 

to partition variances and find the correlation between relatives. With domi- 
nance, the model was extended to 

P = X m + X p + X m p + E ,  (5.24) 

where the new term, Xmp, represents the contribution of dominance to  the 
phenotype. As with X ,  and X,,  Xmp is a population quantity that depends 
on  allele frequencies. With just one locus and two alleles, it is a simple matter 
to describe the universe of genetic effects, as is done in Table 5.7. Furthermore, 
we can partition the phenotypic variance into 

providing that we assume no genotype-environment interactions. It  appears 
that we also assumed that  the additive  and dominance effects are uncorrelated 
because there is  no  covariance term for these factors. However, the least-squares 
method used to find the additive effects  makes the additive  and dominance 
contributions uncorrelated. 

Problem 5.8 Prove that  the covariance between the  additive and dominance 
effects is zero. 

Up to this  point,  both of our models assume that  the genetic contribution 
to a trait is due to a single locus. Obviously, most quantitative  traits will be 
affected by more than one locus. The generalization to many loci for di-allelic 
loci  comes  from simply rewriting Equation 5.24 as 

(5.25) 
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where X m ( i ) ,  Xp(i), and Xmp(i) are  the genetic contributions from the  ith locus 
and  the sum is  over all loci that affect the  trait.  The variance in the phenotype 
is 

VP = VA + VD + VE, 

where  now the additive variance is  defined as the sum of the additive variances 
of the individual loci, 

VA = c vA(i) .  
i 

The dominance variance is summed across loci as well. Once again, we have 
slipped in an assumption to remove  covariance terms.  This  time, we assume 
that there is no interaction between  alleles at different  loci. If there were an 
interaction, the additional variance due to  the interaction would be called the 
epistatic variance, V', and  the phenotypic variance would be 

V P = V A + V D + V I + V E .  

In this more general setting, the heritability is still defined as 

and is often called the narrow sense heritability. The broad sense heritability is 
the  ratio of all of the genetic variances to  the phenotypic variance, 

The covariance  between relatives with many noninteracting loci  is 

Cov{Px, 4.) = TVA + TZVD, 

where, as with the variance partitions, the additive  and dominance variances 
are  the sums of the variances of the individual loci. Thus, as far  as variances 
and covariances  go, the one-locus and multilocus models  give the same results. 

There is one very important  property of the two-allele  model that does 
change  when more loci are added: The  distribution of the genetic effects ap- 
proaches a normal distribution. Notice that  the distribution of height in the 
left side of Figure 5.1 approximates that of a normal distribution,  albeit crudely 
because of the small sample size. There is  no a priori reason why the phenotypic 
distribution should be so, well, normal. The  Central Limit Theorem from prob- 
ability theory does provide a  partial explanation. This theorem states that  the 
distribution of the sum of independent random variables, suitably scaled, ap- 
proaches a normal distribution  as  the number of elements in the sum increases. 
The approach to  the normal distribution is usually quite  fast. For example, the 
distribution of the sum of as few as 10 uniform random variables looks remark- 
ably like a normal distribution.  Thus, if as few as 10 loci contributed to a trait, 
the genetic contribution would  look normal. 
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Of course, the phenotypic distribution also has an environmental component 
that must itself be approximately normally distributed if the phenotypic distri- 
bution is to be normally distributed. In fact,  this  appears to be generally true as 
judged from an examination of the phenotypic distribution of individuals that 
are genetically identical, as occurs, for example, in inbred lines. Perhaps the 
environmental component is also the sum of many small random effects that 
add  to produce their effects on the phenotype. 

One of the outstariding problems of quantitative genetics concerns the num- 
ber of loci that contribute to  the variation in a trait. Speculation has ranged 
from a very large number of loci (tens to hundreds), each with a very small and 
roughly equivalent effect, to very few loci (one to five), each with a relatively 
large effect. Direct genetic analysis of some traits (e.g., the number of bristles 
on a Drosophila), supports the  latter view. With modern molecular techniques, 
this issue should be resolved  in the near future. 

5.5 The intensity of selection 

This  short section provides a quick derivation of the intensity of selection. 
The derivation uses properties of the normal distribution, which are given  on 
page 164. 

The probability density of parental phenotypes is the normal density with 
mean zero and variance Vp, 

Thus,  the  proportion that is selected is the  area 

where a is the largest number that is  less than  the values of the selected parents. 
The proportion may  be  simplified by changing the variable of integration to 
!J = x l f i ,  

(5.26) 

The selection differential is the mean of the selected parents, which  is the 
mean of the parents found in the shaded portion of Figure 5.5.  The density of 
the selected parents is the  truncated normal density 

where the constant C is  chosen to make the integral of the density equal to one, 
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The mean of the selected parents is thus 

As with the proportion selected, the selection differential may be simplified  by 
changing the variable of integration to y = x / a ,  

where 

(5.27) 

(5.28) 

is  called the intensity of selection. 
Notice that  the proportion selected, as given by Equation 5.26, and the in- 

tensity of selection, as given by Equation 5.28, are  both functions of the  quantity 
a / a ,  In  fact,  they  are  both monotonic functions of a / a ;  p is a decreasing 
function and S is an increasing function. As a consequence, for each value of 
p there is a unique corresponding value of the intensity of selection. Thus, we 
can view the intensity of selection as a function of p rather  than  as a func- 
tion of a / a .  Unfortunately, the functional relationship cannot  be  written 
as a simple formula because both p and i ( a / f i )  are functions of integrals. 
However, it is easy to evaluate the integrals with a computer  and in so doing 
obtain Figure 5.6. This figure relates the intensity of selection to  the propor- 
tion of selected individuals. The selection differential is then  obtained using 
Equation 5.27, which should now be  written  as 

which  is the same as Equation 5.12. 
The approach used here to obtain  the selection differential uses an implicit 

assumption that  there  are a large number of measured individuals that  are used 
to select the parents. If the number of measured individuals is 20 or fewer, then 
a more accurate intensity-of-selection function is required. Such functions may 
be found in any standard  text on  quantitative genetics. 

5.6 Answers to problems 

5.1 The heritability is h2 = 2/(2 + 3) = 0.4. The covariance of parent  and 
offspring  is 0.4/2 = 0.2. 

5.2 If VA = 2 and VE = 3, then h 2  = 2/3. The coefficient of relationship 
between parent  and offspring  is l / 2 ,  so their  correlation is 1/2 x 2/3 = 
1/3. The correlations between the other relatives are found in the same 
manner. 
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5.3 The  heritability of height is 4 x 0.476 = 0.673. Thus,  about 67 percent of 
all of the variation in height in the clms is attributable  to genetic causes, 
and  the  other one-third is environmental in origin. The midparent height 
is x = (3 + 1)/2 = 2; the expected height of their child  is 

h2x = 0.673 x 2 = 1.35 inches. 

5.4 Using a pocket calculator, the correlation between parent and offspring is 
0.4366. From Table 5.2  we have h2 = 2 x 0.4336 = 0.8672. 

5.5 The mean additive effect  is 

pa1 + qa2 = p all + 2pqa12 + q2a22 = 0 2 

by the assumption that  the mean of the a’s is zero. 

5.6 No dominance means that a12 = (all + a22)/2, which, when plugged into 
Equation 5.21, gives VD = 0. For the second part, all = a22 = -al2 = a < 
0 and p = 1/2,gives V’ = 0 and VD > 0. Note that, if the a were fitnesses, 
this case  would correspond to an overdominant locus at equilibrium. 

5.7 Equation 5.23 shows that  the correlation between relatives is 

Corr{Px, &} = rh2 + v2-. V D  

VP 

As the correlation between  half-sibs  is 1/12, h2 = V./Vp = 1/3. Using 
this with the correlation between full sibs we get V’/Vp = 1/6. Multiply- 
ing both by V p  = 6 gives V .  = 2  and VD = 1. 

5.8 From Table 5.7, we find that  the covariance between additive  and domi- 
nance effects is 

COV{PX, PY} = p22a1(a11 - 2a1) 

+ 2pq(a1 + a2)(a12 - a1 - a2) + q22a2(a22 - 2a2) 
= -[p2(2a1)2 + 2pq(a1 + a 2 ) 2  + q2(2a2)2] 

+ 2PalCpall + W121 + 2qazCpa12 + qa22) 

= -vA + v. = 0. 



Chapter 6 

The Evolutionary Advantage 
of Sex 

In this  chapter, we use our knowledge of population  and  quantitative genetics to  
explore one the most compelling of evolutionary  conundrums:  Why  sex? Rather 
than  attacking all aspects of this question, we restrict  our  attention to  sex  in 
eukaryotic  anisogamous  creatures, species where the female produces  relatively 
large gametes,  such as eggs or seeds, and  the male  produces a plethora of small 
and mobile gametes,  such as  sperm  or pollen.  This  describes, in other words, all 
of the animals and higher plants,  most of which indulge  in  sexual  reproduction. 
However, there  are species that do not. Most could be called parthenogenetic. 
There  are  many forms of parthenogenesis.  In  forms  where meiosis is not in- 
volved, like apomixis and endomitosis, offspring are genetically almost  identical 
to  their  parent.  The differences that do occur are caused by mutation  or mi- 
totic  recombination.  In forms of parthenogenesis where meiosis is involved, like 
automixis, offspring are  not identical to their  parent  and  are usually inbred. 
Here we will be concerned only with the first form of parthenogenesis, which 
may be found in many  major groups of plants  and animals.* However, except 
for one  group of rotifers, there  are  no  major taxonomic  groups that  are entirely 
parthenogenetic.  Parthenogenetic species must  inevitably face quick extinction 
due,  presumably, to problems  associated  with the absence of sex,  despite the 
fact that parthenogenetic species enjoy a twofold advantage over their  sexual 
siblings. 

Figure 6.1 illustrates the twofold cost to sexual  reproduction  in  anisogamous 
species in  stable  populations.  Each  female,  whether  sexual  or not, will leave 
behind,  on  average,  two offspring. On  average,  in  sexual species, one of the two 
offspring will be a female and  the  other a male. Each of these offspring carries 
one haploid complement of the female's genetic material;  the  other haploid 
genome comes from the male parent. A parthenogenetic female will also leave 

"Interestingly, parthenogenesis has  not been found in natural populations of mammals or 
birds. 
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@ @  R @ @  R 
Sexual Parthenogenetic 

Figure 6.1: A comparison  of the consequences  of sexual  versus  parthenogenetic re- 
production.  The  female  parent  is  illustrated  in both cases. The filled  circles in the 
offspring  come  from the mother; the father’s genetic  contribution  is indicated by the 
open  circles  in the sexual species. 

behind two offspring, but  both will be  females because they  are clones of their 
mother. Moreover, all of the genetic material, four haploid complements, comes 
from the mother.  Thus, the parthenogenetic female leaves behind twice as much 
of her genetic material  as does the sexual female. 

Imagine a sexual species in which a dominant mutation arises that causes 
parthenogenesis. The genome carrying the mutation will appear in two individ- 
uals in the next generation, four the generation after that, and so on, doubling in 
number each generation. Meanwhile, all genomes without the  mutation will be 
replacing themselves once  each generation, on average. Eventually, the species 
will  be made up entirely of parthenogenetic individuals. This is the twofold cost 
of sexual reproduction. 

There must be some problem with this scenario or else all species would  be- 
come parthenogenetic. One possibility, of course, is that mutations to partheno- 
genesis either do not occur or are so deleterious that they swamp their twofold 
advantage. However, in many groups parthenogenesis does recur, so we must 
look  elsewhere  for an explanation of its  ultimate failure. 

Sex in diploids is associated with segregation and meiotic crossing-over; 
parthenogenetic species  have neither. Thus, a natural place to look  for the 
advantages of sex is the examination of segregation and recombination. Both, 
as we shall see, can confer certain advantages to a species. 

’ 6.1 Genetic segregation 

Although the reasons for  sex  have  been  discussed  for decades, most of the  ar- 
guments centered on  crossing-over and recombination. Only recently did Mark 
Kirkpatrick and Cheryl Jenkins point out that segregation itself can confer an 
advantage. Their 1989 paper, “Genetic segregation and  the maintenance of 
sexual reproduction,’’ points out that  the substitution of an advantageous mu- 
tation in a parthenogenetic species requires two mutations  in a lineage, whereas 
substitution in a sexual species requires only one mutation. If the evolutionary 
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Figure 6.2: Evolution  in  parthenogens. 

success of a species depends on its ability to evolve rapidly and if advantageous 
mutations are relatively rare,  then  it is easy to imagine that  the parthenogens 
will be at a disadvantage. 

While plausible, this  argument  carries  little force unless it can be shown to 
enhance the lot of sexual species sufficiently to overcome their twofold cost of 
sex. Kirkpatrick  and  Jenkins did this by first finding the number of loci  in a 
parthenogenetic species that  are heterozygotes waiting for a second mutation 
that allows the fixation of the advantageous mutation  and  then calculating the 
cost of being heterozygous at these loci. 

With incomplete dominance, the fixation of an advantageous mutation in a 
parthenogen occurs in  two steps, as illustrated in Figure 6.2. In  the beginning, 
a typical locus is imagined to be fixed  for the Az allele with the fitnesses of the 
genotypes as follows:* 

Genotype: A1  A1 AlA2 AzA2 
Fitness: 1 + S  1 + hs 1 

The A1 allele is favored, so 0 < S. The  rate of mutation to  the A1 allele is 
U .  Each generation, 2Nu A1 mutations  enter  the  population, on average, and a 
fraction 2sh of these escape loss by genetic drift. (In Section 3.7 we showed that 
the probability of not being lost due to  the action of genetic drift is twice the 
selective advantage of the heterozygote.) Thus,  the  rate of entry of A1 alleles 
into the population is 4Nuhs. If there  are L homozygous  loci experiencing this 
sort of selection, then  the  rate of conversion from homozygotes to heterozygotes 
is 

The environment is assumed to be changing in such a way that L is constant 
rather  than decreasing with the  substitution of each advantageous  mutation. 

The second stage is the conversion of AlA2 heterozygotes to A1  AI homozy- 
gotes, which requires the fixation of an A1 allele on the chromosomes with the 
Az allele. The mean number of A1 mutations  entering each generation at one 
~ 

*The  notation for fitness will deviate  slightly from that of earlier chapters in order to 
approximate that of Kirkpatrick and Jenkins’  paper.  Population genetics suffers from a lack 
of notational conventions; now  you  will get a taste of what will occur when reading the original 
literature. 
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locus is Nu. (The  factor of two  is  missing because  each individual is an AlA2 
heterozygote.) The survival probability of these mutations is twice the selective 
advantage of A1  A1 over A1Az. The selection coefficient of an A1  A1 homozygote 
relative to  the A1  A2 heterozygote, call it S', is found by solving 

l + s  
l + s ' = -  1 + hs 

to  obtain S' = s(l - h)/(l + hs).  Thus,  the  rate of conversion of a particular 
locus from a population of heterozygotes to one of homozygotes is 

2Nus(l-   h)/(l  + hs). 

If n  loci are  currently heterozygous, then  the  rate of conversion from AlAz to 
A1  A1 for the genome  is 

~ ( 1 -  h) 2Nun--. 
1 + hs 

The equilibrium number of heterozygous loci  is found by setting  the  rate of 
conversion to heterozygotes, Equation 6.1, equal to  the  rate of conversion away 
from heterozygotes, Equation 6.2, and solving  for n, 

2Lh(l+ hs) A =  
l - h  ' 

which  is Equation 1 in  the Kirkpatrick and Jenkins paper. 
In sexual species, the A1 allele  sweeps through  the  population  without wait- 

ing for a second mutation.  The  contrast  in  the  dynamics of sexual and asexual 
species  is illustrated in Figure 6.3. The asexual species  is at a relative disad- 
vantage while sitting on the  plateau waiting for the second mutation  to sweep 
through. 

The fitness contribution of each of the A heterozygous loci to  the partheno- 
genetic individual's overall fitness is 1 +ha. If the overall fitness of an individual 
is the  product of the fitnesses of individual loci (multiplicative epistasis),  then 
the  total fitness contribution of the A heterozygous loci  is (1 + hs)*.  These 
same loci in the sexual species  will  have sped to fixation, so their  total fitness 
contribution is (1 + S)*. The relative advantage of the sexual species is 

which  is Equation 2 in the Kirkpatrick and  Jenkins  paper. 
Suppose, for example, that S = 0.01, L = 100, h = 1/2;  then  the number of 

heterozygous loci is A = 201 and  the relative advantage of the sexual species is 
W, = 2.7, which  is  sufficient to overcome the twofold cost of sex. 

Problem 6.1 Selection of 1 percent  might  be considered unrealistically  large. 
How many  loci  must be involved to overcome the twofold cost of sex when 
S = 0.001 and h = 1/2? 
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Figure 6.3: The  trajectory of allele  frequencies  under  directional  selection  in  asexual 
and sexual  species. 

If a species is constantly evolving, then sex with its accompanying segrega- 
tion will speed up the fixation of advantageous mutations  and  thereby raise the 
mean fitness of the population. We have  no idea about plausible values of L 
and S for natural  populations, so we cannot say with any confidence that sex is 
maintained due to  the benefits of segregation. We can say with confidence that 
segregation could explain the maintenance of sex. 

There  are some reservations about Kirkpatrick and Jenkins’ model, though 
not about  the basic idea. Foremost among these is the assumption that  the  total 
fitness of an individual is obtained by multiplying the fitness contributions of 
individual loci. The experimental evidence, as will be  shown later, suggests that 
fitness drops off faster than this as loci interact,  the  quantitative effects of which 
will be complex, affecting both A and W, but  not affecting the fundamental 
conclusion that segregation speeds up the  rate of substitution of incompletely 
dominant mutations.  Other reservations may be found in the paper itself. 

6.2 Crossing-over 

In addition to segregation, sex  is  also associated with crossing-over and  its con- 
sequence, recombination. As an evolutionary force, recombination causes alleles 
at different  loci eventually to become randomly associated with one another. 
There is an obvious evolutionary advantage to recombination if there  are fre- 
quent situations where a species’ fitness will be enhanced by rapidly bringing 
together  particular alleles onto the same chromosome.  For example, suppose a 
species  is  fixed  for the A2 allele at  the A locus and the B2 allele at  the closely 
linked B locus and  that  the environment suddenly changes such that  the A1 
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Figure 6.4: The chromosome on the left  shows the position of the A and B loci. The 
right  side  illustrates  the four possible  gametes  with  their  frequencies. 

and B1 alleles are now favored. If there is  no recombination, then evolution will 
most likely  proceed by one of two routes. Either a mutation to A1 will appear 
and  the A1 allele will increase in frequency,  followed  by the appearance and in- 
crease of a B1 mutation on an AI-containing chromosome, or the B1 mutation 
will appear  first, followed  by an A1 mutation on a B1-containing chromosome. 
(Or, rarely, both events could happen.) The i,mportant  points  are that two  mu- 
tational events are required in the same lineage in order for the population to 
achieve fixation at both loci and  that  the second mutational event is  unlikely 
to happen until the frequency of the chromosomes carrying the first mutation 
is  very high. 

If recombination is  allowed and if both  the A1 and B1 mutations  appear 
and increase, recombination can cause the two to come together  on the same 
chromosome without requiring a second mutation on the same lineage. More- 
over, this can occur before either A1 or B1 mutations  are very frequent. Like 
segregation, recombination appears to speed up evolution. In the case of recom- 
bination, the speedup is due to  the production of a recombinant gamete that is 
more fit than other gametes in the population. 

To appreciate some of the subtleties of this  argument, which  was published in 
1932 by the geneticist H. J. Muller, we need to learn more about  the evolutionary 
consequences of recombination. The simplest model capable of showing the 
effects of recombination is of a diploid  species with two linked loci, each'with 
two segregating alleles. The left-hand side of Figure 6.4 illustrates the position 
of the two  loci  on the chromosome. The probability that a recombinant gamete 
is produced at meiosis  is denoted by T ,  which  is often called the recombination 
rate.  (The genetic or map distance between the loci  is  always greater than 
T because it is the average number of recombinational events rather  than  the 
probability of producing a recombinant offspring.) 

The right-hand side of Figure 6.4 shows that  there  are four gametes in the 
population, A1 B1, A1 Bz, A2 B1, and A2Bz with frequencies p11 , p12, pal, and 
p 2 2 ,  respectively. The frequency of the A1 allele, as a function of the gamete 
frequencies, is pl. = p11 + pl2. The dot in the subscript acts as a placeholder 
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to remind you that there is another locus around,  but that we are ignoring it, 
Similarly, the allele frequency of B1 is p.1 = p l l  + p21, 

Recombination changes the frequencies  of these gametes in a very simple 
way. For example, the frequency of the AlBl gamete after a round of random 
mating, p i l ,  is simply 

Pi1 = (1 - T ) P l l  + TPl.P.1 ' (6.3) 

This expression is best understood as  a  statement  about the probability of choos- 
ing an AlBl gamete from the population. A randomly chosen gamete will  have 
had one of two  possible histories: Either  it will be a recombinant gamete  (this 
occurs with probability T )  or it won't be (this occurs with probability 1 - T ) .  

If it is not a recombinant, then the probability that  it is an AlBl gamete is 
p l l .  Thus,  the probability that  the chosen gamete is an unrecombined AlBl 
gamete is (1 - r ) p l l ,  which  is the first term on the right side of Equation 6.3. If 
the gamete is a recombinant, then the probability that it is AlBl is the prob- 
ability that  the A locus  is A I ,  which  is just  the frequency of A I ,  P I . ,  times the 
probability that  the B locus  is B1, p .1 .  The probability of being a recombinant 
gamete and being A1 B1 is rpl.p.1, which  is the rightmost term of Equation 6.3. 
The allele  frequencies can be multiplied because the effect of a recombination is 
to choose the allele at the A and B loci independently. 

Problem 6.2 Derive the  three equations for the frequencies of the A1 Bz, A2 B1, 
and AzBz gametes  after a round of random mating. 

The change in the frequency of the AlBl gamete in a single generation of 
random mating  is, from Equation 6.3, 

&P11 = T ( P l . P . 1  - P l l ) .  (6.4) 

The equilibrium gamete frequency is obtained by solving Arpll  = 0, 

h11 = P l . P . 1 .  

If there were  no tendency for the A1 allele to be associated with the B1 allele, 
the probability of choosing an AlBl allele  from the population would be the 
product of the frequencies of the A1 and B1 alleles. As this is  precisely the 
equilibrium state of the population, we conclude that recombination removes 
associations between  alleles  on  chromosomes. The  rate of change of the gamete 
frequency due to recombination is simply the recombination rate, T .  

The deviation of the frequency of AlBl from its equilibrium value  is called 
linkage disequilibrium, 

D'= p11 - P I . P . I .  (6.5) 

Thus,  the frequency of the AlBl gamete may  be written 

P11 = Pl.P.1 + D, 
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which emphasizes that  the  departure of the gamete frequency from its equilib- 
rium value  is determined by D. Obviously, at equilibrium D = 0. The linkage 
disequilibrium may  also be  written in the more conventional form 

D = PllP22 - P 1 2 P 2 1 ,  (6.6) 

which leads to  the following  new expressions for the gamete frequencies: 

Gamete: A1 B1 A1 B2 A2Bl &B2 
Frequency: P1 1 P1 2 P2 1 P22  

Frequency: pl .p .1  + D  p1.p.2 - D  p2.p.1 - D  p2.p.2 + D  

Problem 6.3 Show that  the gamete frequencies as a function of D are correct in 
the above table. Next, show that  the definition of D in  Equation 6.6 is consistent 
with the expressions for gamete frequencies by substitutingpl.p.1 +D f o r p l l  and 
the equivalent expressions for  the  other  gametes into right  side of Equation 6.6, 
proceeding with a feeding frenzy of cmcelations, and ending with a lone D. 

The A l B l  and A2B2 gametes are often called coupling gametes because the 
same subscript is  used  for both alleles. The A l B 2  and A2B1 gametes  are called 
repulsion gametes. Linkage disequilibrium may be thought of as a measure of 
the excess of coupling over repulsion gametes. When D is positive, there  are 
more coupling gametes than expected at equilibrium; when negative, there  are 
more repulsion gametes than expected. 

The value of D after a round of random mating may be obtained directly 
from Equation 6.3 by using p11 = pl.p.1 + D ,  

p:.pll + D’ = (1 - r ) ( p l . p . l  + D) .  + rpl .p .1 .  

A few quick cancellations yield 

D‘ = (1 - T ) D .  

Some of the cancellations use the Hardy-Weinberg truism that allele frequencies 
don’t change with random mating. We  would be in  trouble if the addition of 
loci  affected the Hardy-Weinberg law  for single loci! 

The change in D in a single generation is 

A,D = -rD, 

which depends on the gamete frequencies only through  their  contributions to 
D. Finally, 

Dt = (1 - r)tDo, 

showing, once again, that  the ultimate state of the population is D = 0. Note 
that with free recombination (r = 1/2) the linkage disequilibrium does not 
disappear in a single generation. If you  find this  startling, follow D for a couple 
of generations in a population initiated with p11 = p22 = 1/2 and,r = 1/2. 
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In natural  populations, the reduction in the magnitude of linkage disequi- 
librium by recombination is opposed by several evolutionary forces that may 
increase IDI. Natural selection will increase D if selection favors coupling ga- 
metes over repulsion gametes or decrease D if repulsion gametes are favored. 
Migration may increase the absolute value of D if the allele frequencies of the 
immigrants differ  from those of the resident population. Finally, genetic drift 
can lead to changes in D due to random sampling. As recombination is most 
effective  for  loosely  linked loci, we  would expect to find tightly linked loci far- 
ther from  linkage equilibrium than loosely  linked loci. This has been  seen in 
molecular data,  but  the linked  loci  must be very  close indeed in order to see 
significant  levels  .of disequilibrium. 

Returning to Muller’s argument that recombination should speed up evolu- 
tion, our newfound  knowledge of the evolutionary consequences of recombine 
tion has turned up a potential problem. Recombination not only brings alleles 
together,  but also breaks down associations between  alleles. This can actually 
retard  the  rate of evolution if the repulsion gametes, AI& and AzBl, are less 
fit than  the AlBl gamete. For an in-depth discussion of Muller’s  model and 
other aspects of the evolution of sex, read John Maynard Smith’s Evolutionaw 
Genetics (1989). 

6.3 Muller’s ratchet 

One advantage of sex  is to speed up evolution through either segregation or r e  
combination. In a world populated by evolving predators, prey, and pathogens 
and in a physical environment that is constantly changing, the ability to evolve 
quickly must enhance a species’ long-term fitness appreciably. The origin and 
maintenance of sex may be attributed to  its role  in speeding up the  rate of 
evolution. In addition, sex also plays a role in removing deleterious mutations 
from a population. H. J. Muller was the first to point this out by describing a 
phenomenon that has come to be  called  Muller’s ratchet. Muller pointed out 
that, without sex, deleterious mutations may accumulate on chromosomes faster 
than selection can remove them from the population, leading to  the  ultimate 
extinction of the species. The operation of the ratchet involves three evolution- 
ary forces: mutation, selection, and genetic drift,  as will  be described in this 
section. 

Picture  a population of N parthenogenetic diploid individuals. Each indi- 
vidual will have a certain number of deleterious mutations sprinkled around on 
its chromosomes.  Assume that  the mutation rate  to deleterious alleles at any 
particular locus  is so small that all deleterious mutations  are heterozygous with 
the normal allele. The individuals may be grouped according to  the number of 
deleterious mutations that they possess. A fraction 50 of individuals will have 
no deleterious mutations, a fraction 21 will have one deleterious mutation,  and 
so forth. The left side of Figure 6.5 shows these classes of individuals. Note that 
the class of individuals with i deleterious mutations is genetically heterogeneous 
because  different individuals are likely to have their i deleterious mutations at 
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Figure 6.5: An illustration of two  clicks of Muller’s ratchet. The boxes represent the 
class of individuals  with a’ deleterious  mutations.  The two  chromosomes within each 
box  represent  typical  individuals.  The  number of generations  between  each  column of 
boxes depends on the efficacy of genetic  drift. 

different loci. 
If the number of individuals with no mutations, N x o ,  is small, then  this class 

will be subject to  the action of genetic drift,  just  as a rare  mutation is subject 
to gelietic drift. (Demographic stochasticity is the only source of randomness, 
as segregation does not occur in asexual organisms.) Should drift cause the loss 
of all individuals with no mutations,  then each individual in the population will 
have at least one deleterious mutation,  and Muller’s ratchet will have clicked 
once. This is illustrated in Figure 6.5 by the shift from column 1 to column 2. If 
the number of individuals with one mutation, N x l ,  is small, then this class  will 
be subject to loss by genetic drift. If this class is lost, each individual will  have 
at least. two mutations,  and the  ratchet will have  clicked  once again. The  rate of 
clicking of the  ratchet is set by the time to loss of the smallest class by genetic 
drift. If the parameters are  appropriate,  then  the species slowly accumulates 
deleterious mutations, leading to its eventual extinction. 

For  Muller’s ratchet to work, the numbers of individuals in the class with the 
fewest mutations must be small. Population genetics can tell us the size of this 
class, if  we are willing to make a few critical assumptions. The most important 
assumption is that  the fitness of an individual with i deleterious mutations is 

wi = (1 - hs)d. 

The fitness contributions of the i heterozygous loci  for deleterious mutations 
are multiplied together to obtain  the fitness of the individual. The interaction 
of alleles at different  loci  is  called epistasis; the form of epistasis used here is 
called multiplicative epistasis. Multiplicative epistasis implies that  the effects  on 
the probability of survival of individual loci are  independent. If your chance of 
surviving from the effects of each of two  loci in isolation is 1/2, then your chance 
of surviving their  joint effects  is 1/4. Later in this  chapter we  will consider 
another form of epistasis and some of the relevant experimental literature. 
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The derivation of the frequency of the classes of individuals with i muta- 
tions requires a knowledge of the Poisson distribution. Those unfamiliar with 
this  distribution should read the description on page 159. Our basic strat- 
egy  is to assume that  the number of deleterious mutations in an individual is 
Poisson-distributed and  then to find the mean of the Poisson as  a function of 
the mutation rate and the  strength of selection. Why a Poisson? You  will have 
to wait until the derivation is finished; then you  will  see. 

Assume, then,  that  the number of mutations per individual is Poisson- 
distributed with mean p ~ ,  

Prob{i mutations) = 
e-PK a PK 

i! * 

With each reproduction, assume further that  an offspring  receives a Poisson- 
distributed number of new mutations with mean U, 

e-uuj  
j !  Prob{j new mutations} = -, 

The number of mutations after reproduction is the sum of two  Poisson distribu- 
tions, one with mean PK representing the number of mutations per individual 
before reproduction and one with mean U representing the number of new  mu- 
tations. As the sum of two  Poisson random variables is Poisson-distributed with 
mean equal to  the sum of the meains  of the two Poissons, we see immediately 
that  the mean number of mutations per individual after reproduction is Poisson 
with mean 

P' = PK + U. 
Thus, the frequency of individuals with i mutations after reproduction is 

The frequency of an individual with i mutations after selection is propor- 
tional to its frequency before  selection times its fitness, 

The  numerator is 
e-pJ[p'(l- hs>]i 

i! 
The denominator is 
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The  third line is obtained from the Taylor series expansion of the  exponentid 
function. 

Thus,  Equation 6.7 becomes 

e-P'(l-hs) [p' (1 - hs)]i 
i! 

which is, once again, a Poisson distribution. The mean of the new Poisson 
distribution is 

/& = (PK + U)(1- hs). 

, 

At equilibrium, the mean does not change, so 

U(1-  hs) U 
PK = M -  hs hs ' 

from  which we obtain the frequency of individuals with i mutations at equilib- 
rium, 

e-u/ha(U/hs)i 
i! 

For Muller's ratchet to operate, the numbers of individuals with no mutations 
must be small enough that they will be eliminated in a reasonable time by 
genetic drift. Suppose, for example, that  the  total genomic mutation  rate to 
deleterious alleles  is U = 1, that  the average selection against  mutations  in the 
heterozygous state is hs = 0.1, and  that  the population size  is N = lo6. In  this 
case the number of individuals with no deleterious mutations is 

2i M 

N X O  = 4.54, 

which  is so small that genetic drift will soon eliminate them, even though  they 
are  the most fit genotypes in the population. However, if the population size is 
much larger, say N = lo7, then N X O  = 454 and  the ratchet comes to a grind- 
ing halt because the waiting time to fix the class of individuals with the fewest 
mutations becomes extraordinarily long. In those cases where the  ratchet does 
operate,  the accumulation of deleterious mutations proceeds at a rate deter- 
mined  by N ,  he, and U. As there is no sex, hence no recombination, there is 
no way to reverse the steady reduction of fitness. 

Problem 6.4 Ten percent selection per locus is  too high. Heterozygotes for 
lethals, for example, usually are at about a 2 to 5 percent disadvantage in 
Drosophila. If hs is changed to 0.02, what happens? 

When there is sex, recombination can generate chromosomes with fewer (and 
more) mutations, as seen in Figure 6.6. Thus,  the classes with fewer mutations 
are continually regenerated so that sex, with its accompanying recombination, 
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Figure 6.6: An illustration of the production of a chromosome  with  fewer  deleterious 
mutations than in  either  parental  chromosome  because of crossing-over.  The  filled 
circles  represent  deleterious mutations. 

may  slow  down or even  reverse the clicking of Muller's ratchet. For this reason, 
sex  is  viewed as a way  of eliminating deleterious mutations  and hence is favored 
by natural selection. Unfortunately, the  story must end here because very little 
is  known about  the dynamics of deleterious mutations in finite populations 
with recombination and even  less  is  known about  the evolution of mutations 
promoting sex. 

Because of the difficulty in obtaining a quantitative value  for its  advantage, 
it remains unclear whether Muller's ratchet can account for the maintenance of 
sex. However, the ratchet is often evoked with confidence to explain the loss of 
genes from chromosomes that  do  not recombine.  For example, in many species in 
which the male is the heterogametic sex, the Y chromosome does not recombine 
with either the X chromosome  or other Y chromosomes. Without recombina- 
tion, the Y chromosome should slowly accumulate deleterious mutations and, 
quite plausibly, eventually fail to have any functional genes at all. In many 
species, including our. own, the Y chromosome  is almost entirely heterochro- 
matic with only a few loci. Muller's ratchet is a perfectly viable explanation for 
this  fact. 

6.4 Kondrashov's hatchet 

The assumption of multiplicative epistasis in the model of Muller's ratchet is 
' contradicted by a number of experimental studies. One such study by Terumi 

Mukai  (1968)  is illustrated in Figure 6.7. In this  study, Mukai accumulated 
mutations on second  chromosomes of Drosophila  melanogaster for  60 gener- 
ations under conditions that minimized natural selection. As the mutations 
accumulated, the relative viability of the second  chromosomes  when  homozy- 
gous decreased. Mukai estimated that  the mutation rate  to deleterious muta- 
tions with measurable effects  was  0.1411 per second chromosome per genere 
tion. For example, at 60 generations, a typical second chromosome would have 
60 x 0.1411 = 8.46 mutations, which corresponds to  the rightmost point on the 
graph. 

The  three curves on the graph correspond to three different models of epis- 
tasis. The lower  convex curve is  for multiplicative epistasis of the form 

W n  = (1 - 
where n is the number of deleterious mutations, S is a measure of the effect 
of  each mutation,  and wn is the relative viability of a fly with n homozygous 
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Figure 6.7: The  relative  viability aa a function of the inferred  number of homozy- 
gous deleterious  mutations in Drosophila naelanogaster. The  upper  concave  curve  is 
a quadratic  synergistic  model, the middle straight line  is an additive  model,  and the 
lower convex curve  corresponds to multiplicative  epistasis.  The data are from Mukai 
(1968). 

deleterious mutations. The method of least squares was  used to estimate S, 
whose  value  is  0.05897. The middle straight line corresponds to additive epistasis 

wn = 1 - sn 
, with S = 0.04749. Finally, the upper concave curve is  for a quadratic model of 

synergistic epistasis, 
wn = 1 - sn - an2, 

where S = 0.009813 and a = 0.00555. The figure  leaves little  doubt that syn- 
ergistic epistasis fits the  data much better  than do additive  or multiplicative 
epistasis. With synergistic epistasis, fitness drops off faster than expected from 
the effects of mutations in isolation. It is an embodiment of the notion of “things 
going from bad to worse.” 

Synergistic epistasis does not invalidate Muller’s ratchet,  but  it does change 
its  rate. Unfortunately, the multiplicative assumption is directly responsible 
for the Poisson distribution of the number of mutations per genome. Changing 
this assumption necessitates a much more difficult mathematical development. 
Rather  than pursuing that gruesome prospect, a much more exciting direction 
is to investigate the effects of synergistic epistasis itself  on the  fate of sexual 
and asexual species. This will lead to another argument for the evolutionary 
advantage of sex based on the ability of sexual species to eliminate deleterious 
mutations more effectively than do asexual species. 

The  importance of synergistic epistasis for the maintenance of sex was em- 
phasized in a paper by  Alexey Kondrashov (1988), whose model was dubbed 
Kondrashov’s hatchet by  Michael Turelli, who  is  never wanting for  a clever turn 
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Number of deleterious -mutations 
Figure 6.8: The frequency of asexual individuals just after reproduction and  just before 
selection when IC = 10 and U = 1. 

of phrase. Models of synergistic epistasis are very  difficult to analyze. How- 
ever, Kondrashov realized that truncation selection, which  is  well understood 
by quantitative geneticists, is  really an  instance of synergistic epistasis. Imagine 
that “deleterious” mutations accumulate in a genome with no effect  on fitness 
until the number of mutations exceeds  some  magic number, IC, at which point 
any additional  mutations  are  lethal. Said another way: Fitness, as a function 
of the number of deleterious mutations, is equal to one until the number of mu- 
tations is greater than IC; when the number of deleterious mutations is greater 
than IC, fitness is  zero. The fitness could  be written as 

w n =  { 1 i f n s k  
0 ifn>IC * 

The  hatchet falls on all genotypes with more than IC mutations. 
If the number of mutations is now  viewed as a quantitative trait,  then Kon- 

drashov’s hatchet is formally the same as truncation selection, as  studied in 
Chapter 5.  Accordingly, we  will use our results on the response to selection to 
study the evolution of the number of deleterious mutations per individual in 
sexual organisms. But  first, we  will record some observations about selection in 
asexual organisms to see the relative advantages of being sexual.. 

Mutation is added to Kondrashov’s model  in the same way as was done for 
Muller’s ratchet. Each generation, every  offspring  receives a Poisson-distributed 
number of new deleterious mutations. The mean of the Poisson  is U. Through 
time,  the number of deleterious mutations in any lineage will increase until it 
reaches IC. From then  on, any offspring with additional  mutations will die. After 
a sufficient period of time, every individual in the population will have exactly 
IC mutations. From this point on,  the frequency of offspring in the population 
with  no additional  mutations is the probability that a Poisson random variable 
with  mean U is zero, 

Prob{X = 0) = e-’. 

The probability that  an offspring has one or more new mutations is 1 - e-’. 
The frequency of individuals with IC = 10 or more mutations, before selection 
and when U = 1, is illustrated in Figure 6.8. 
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The genetic load of the equilibrium asexual population is just 
W m w  - 2TI 

Wmax 
= 1 - [e-' x 1 + (1 - e-') x 01 
= 1 - e-'. 

Once again, we have a calculation that shows that  the genetic load depends only 
on the mutation rate  and is independent of the  strength of selection. For small 
U, the load is approximately 

1 - (1 -U) = U, 
which  is the same as  the result we obtained on page 62. There,  the  contribution 
of a single  locus to  the load was found to be 2u, where u is the  mutation  rate 
per allele. Here, U is the  mutation rate per diploid genome, which  is twice the 
rate per haploid genome. This difference accounts for the factor of two. 

As an aside, it is worth noting that  the equilibrium mutational load for an 
asexual species with any sort of epistasis is remarkably easy to derive by consid- 
ering only the frequency of the genomes that  are free of deleterious mutations, 
50.  In  the next generation, the frequency of this class is 

, zowoe-' 

That is,  its frequency is equal to  its frequency in the current generation times the 
probabilitythat  an offspring gets no additional  mutations (e-' is the probability 
that  the Poisson random variable is zero) times the fitness of the deleterious- 
free class, WO, which is one in our models, divided by the mean fitness of the 
population. At equilibrium, x; = 20, so 

x0 = 
cij 

a = e-'. 

The simplicity of the result might be unsettling at first,  but really is as simple 
as it  appears. 

Consider now the situation in a sexual species. As a first step, imagine what 
would happen if the asexual species  were suddenly to'turn sexual. With meiosis 
and crossing over, individuals would appear with fewer than k mutations. They, 
along with those with k mutations, would  live,  while those with more than IC 
would die. As a result, the mean number of deleterious alleles would be less 
than in the asexual population. With sex, selection lowers the mean number of 
mutations per individual, while mutation increases the number, Eventually an 
equilibrium is reached where the genetic load must be  lower than  the asexual 
load. By  how much  lower? Read on! 

Kondrashov's hatchet kills off all offspring with more than k mutations, 
which reduces the average number of deleterious mutations per individual by 
an amount that is, by definition, the selection differential, S. As there is no 
environmental contribution to  the number of deleterious mutations, the heri- 
tability of this phenotype is h2 = 1. By Equation 5.11, the response to selection 
is 

R = haS. = S. 
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' Thus, each generation the average number of mutations per individual is in- 
creased by U and decreased by R = S. Eventually, an equilibrium will be 
reached  where 

Our job is to discover the  mutational load at this equilibrium and  to see if it is 
sufficiently smaller than  the asexual load to overcome the twofold cost of sex. 

Recall  from Chapter 5 that  the selection intensity is 

S i(p) = - 
f i '  

Dividing both sides of Equation 6.8 by f i ,  we find that  the selection intensity 
at equilibrium is 

I, 

i(p) = - 
f i '  

U 

The rightmost term,  the  ratio of the mean number of deleterious mutations 
in an offspring divided by the  standard deviation of the  total number of dele- 
terious mutations per individual, is subject to experimental investigation. In 
Drosophila, Kondrashov argued that U = 2 and f i  = 10, in  which case the 
intensity of selection is i(p) = 0.2. Referring to Figure 5.6, we see that this in- 
tensity occurs when about 10 percent of the population is  killed each generation 
by Kondrashov's hatchet.  This is the mutational load of a sexual population 
at equilibrium. The genetic load of an asexual species  is 1 - = 0.86, much 
greater than  the genetic load of sexual species (0.1). The  ratio of the sexual 
to asexual mean fitnesses is about 0.9/0.14 = 6.4, which easily overcomes the 
twofold  cost of sex. 

In this  chapter, we have examined four  possible explanations for the main- 
tenance of sex in face of its twofold cost. Two of the explanations, those of 
Kirkpatrick and Jenkins and of Kondrashov, can be developed to  the point of 
showing quantitatively that sex can plausibly achieve a twofold advantage. We 
have not addressed the  actual evolution of sex. That is, we have not followed 
the  fate of a  mutation that confers sexuality on its bearer to see that sex will, 
in fact, evolve.  Models of the evolution of sex are very  difficult to analyze. 

6.5 Answers to problems 

6.1 The number of heterozygous loci  needed to overcome the twofold cost sat- 
isfies 

(1.001/1.0005)" = 2 

which  gives A = 1387. The number of loci, L, as a function of A is 

L =  = 693. A(1- h) 
2h(1+ hs) 
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6.2 Derive the  three equations for the frequencies of the A 1 B 2 ,   A 2 B 1 ,  and A 2 B 2  

gametes after  a round of random mating. 

P i 2  = (1 - T I P 1 2  + T P l . P . 2  

Pal = (1 - T ) P 2 l  + T P 2 . P . l  

P a 2  = (1 - T ) P 2 2  + T P 2 . P . 2  ' 

6.3 The verification for A l B 2  is 

P 1 2  = p 1 . p . 2  - D 
= ( P 1 1   + P 1 2 ) ( P 1 2   + P 2 2 )  - ( P l l P 2 2  - p 1 2 p 2 1 )  

= P l 2 .  

The other cases are done similarly. The verification of Equation 6.6 is easy 
(and  fun). 

6.4 For U = 1 and hs = 0.02, 

eUfhs = 1.9 x 

The problem, of course, is that selection is so weak that mutation dom- 
inates  and the simple dynamics of Muller's ratchet break down. (Unless 
you  feel that population sizes are larger than 
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Mathematical Necessities 

The  mathematics used in this book are mostly those found in high school alge- 
bra courses. The exceptions &re certain  approximations based on Taylor series 
expansions, which  will be summarized in this  appendix,  and some calculus that 
appears mostly in the advanced topics at  the ends of some chapters. 

The Taylor series expansion of the function f(s) around so is 

where f(") is the  nth derivative of f .  In population genetics, satisfactory  ap- 
proximations to a function are often obtained by using only the first three  terms 
in the expansion, 

The most commonly employed approximation in population genetics is  of a 
product of numbers, each  close to one in magnitude. For example, suppose we 
wish to approximate the product 

where 1sal is  close to zero. When faced with a product, your first thought should 
always be to convert it  to a sum. Sums are often easier to work with,  particularly 
in the present context. The conversion is done with the  natural  logarithm,  as 
this function has  the property that  the log of a  product is the sum of the logs, 
ln(ab) = ln(a)  +In@). However, we can't simply take the log of Equation A.2, as 
this would change its value. Rather, we take  the exponential* of the log, as  the 

*The exponential function is written sometimes a8 e" and sometimes as exp(z). 

151 

, I , I. .. , , , _.,.. , "., , I ... ,... .I,. ,*.,. I ., ,, ., . . . " .  .. , ... . ",. ,...... . ,.,. . ,_. . , . ./ , . . . . . . , . I ,  .. /... ... .," 



152 Appendix A 

exponential and logarithm functions are inverses of each other,  exp(ln(z)) = x. 
Taking the exponential of the log of Equation A.2  gives 

At this point we need the first of our function approximations, 

when x is  close to zero. If 1x1 is very small, say x = 0.1, then we may usually 
ignore the squared term, as its value  is  only  0.5 percent of the value of the first 
term, x. Applying this approximation to our product gives 

i=l 

which  is usually as  far as we need  go. In some cases, we may want to use the 
approximation for the exponential function, 

ex W 1 + x  + x 2 / 2 ,  (A.5) 

which  is  valid  when x is  close to zero, to approximate  Equation A.4 with 

when x is sufficiently small. 

Problem A.1 Suppose xi = 0.1 and n = 10. Calculate the  product and the two 
approximations to  the  product. Do the same thing  for x =' 0.05. Notice  how 
much the approximations improved in the second  case. 

Another approximation that is frequently used in population genetics is 
based on the sum of a geometric series, 

when 1x1 < 1. When x is small, 

1 
l - x  - W l + z + x 2 .  

Three  types of means occur in population genetics: the  arithmetic, harmonic, 
and geometric. The  arithmetic mean of n numbers is the familiar 

a =  
x l + z a + " ' + x ,  

n 
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The geometric mean is the  nth root of the  product, 

g = (2122 . . . Z n ) q  
where zi 2 0. Finally, the harmonic mean is the reciprocal of the  arithmetic 
mean of the reciprocals, 

h =  ( 1/21 + l/x2 + ' ' + l/Z, 
n )-l, 

where 5 1  > 0. A famous inequality from classical mathematics is 

a > g l h ,  

where equality holds only  when all of the xi are equal. 
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Probability 

Many of the main  ideas  in  population genetics involve some element of random- 
ness. Genetic  drift is the prime  example,  but even as seemingly a  nonrandom 
quantity  as  the mean fitness of the population, a, is couched in the vocabu- 
lary of probabilities.  Population genetics uses only the most basic elements of 
probability  theory, but  these elements are crucial to a true understanding of 
the field. This  appendix contains  everything that is required. It is not  meant 
to  substitute for a proper  probability  course, but  it may  serve as a reminder of 
things  learned elsewhere or, for some, a telegraphic but complete  background 
for the book. 

Probability  theory is concerned with the description of experiments whose 
outcomes cannot  be known with  certainty. Rather, a certain  probability is 
associated  with each outcome. In population genetics, we are usually  interested 
in  attaching some numerical value to  the outcome of an experiment. The value 
may be  the frequency of an allele, the height of an individual, the fitness of a 
genotype, or some other  quantity. We are frequently  interested in the mean  or 
variance of these values. Random variables are  the  constructs  that  capture  the 
notion of numerically valued outcomes of an experiment. Thus,  this  appendix 
is mostly about  random variables. 

What are random variables? 

A  discrete  random  variable, for example X, is a function that takes  on  certain 
values depending  on the outcome of some  event,  trial, or experiment. The 
various outcomes have probabilities of occurring; hence, the values of the random 
variable have probabilities of occurring. An event with n outcomes and  its 
associated  random  variable may be' described as follows: 

155 
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Outcome Value of X  Probability 
1 P1 
2 5 2  P2 

i xi Pi 

n x?% P, 

To be  sure  there is  always an outcome, Cy=, pi = 1. We say that  the probability 
that  the random variable X  takes on the value xi is pi ,  or, more concisely, 

Prob{X = xi} = pd. 

The probabilities p1 ,p2, , , , are often referred to as  the probability density or 
probability distribution of the random variable X. 

For example, if  we flip a fair coin and  attach  the value one to  the outcome 
heads and zero to tails, the  table becomes: 

Outcome Value of X  Probability 
Heads 1 1/2 
Tails 0 1/2 

Moments  of random variables 

Two properties of random variables are useful in applications, the mean and  the 
variance. The mean is  defined as 

n 

E{X} = C P i Z i ,  (B.1) 
i= 1 

where E means “expectation of.” Notice that  the mean is a weighted average of 
the values taken by the random variable.. Those values that  are more probable 
(have a larger p i )  contribute relatively more to  the mean than  do those values 
that are less probable. The mean is often denoted by b. 

The variance of a random variable 
tions from the mean, 

Var{X} = 

is the expectation of the squared devia- 

A useful observation gleaned from the last line is 

Var{X} = E{x~} - E{x}~. 



Probability 157 

The variance is often denoted by u2. The mean is  called a measure of central 
tendency; the variance, a measure of dispersion. 

For our coin-flipping example, the mean is 

p = - x l + p o = ~ ,  1 1 1 
2 

and the variance is 

In population genetics, an  important  quantity is the mean fitness of the 
population, zij. The mean fitness does  have a proper probabilistic interpretation 
if  we construct a random variable whose  values are  the fitnesses of genotypes 
and whose probabilities are  the frequencies of genotypes. 

Outcome Value of X Probability 
A1 A1 1 P2 

The mean fitness of the population is 

ti) = p2 x 1 + 2pq x (1 - hs) + q2 x (1 - S) 
= 1 - 2pqhs - q2s.  

While the invocation of a  random variable in this  setting may  seem contrived, it 
reflects a  duality in the definitions of probabilities that runs deep in probability 
theory. Often it is more natural  to refer to  the probability of an outcome; other 
times it is more natural  to refer to  the relative frequency of an outcome in an 
experiment that is repeated many times. The definition of the mean fitness falls 
into the  latter framework. 

Noteworthy discrete random variables 

Bernoulli random variable 

These are very similar to our coin-flipping example except that we allow 
probabilities other than 1/2: 

Outcome Value of X Probability 
Success 1 P 
Failure 0 q = l - p  

The mean of a Bernoulli random variable is 

p = l x p + O x q = p ,  
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and  the variance is 
o2 = 1’ x p + o 2  x Q - p ’  = p q .  

Binomial random variable 

These random variables represent the number of successes in n independent 
trials when the probability of success  for  any one trial is p .  The random variable 
can take on the values 0,1,. . . , n with probabilities 

Prob{X = i} = 
n! 

i ! (n  - i)! p”1 - p)n- i ,  (B.3)’ 

where n! = n(n-l)(n-2)  (2)(1) is “n factorial.” For example, the probability 
of three successes in five trials when the probability of success  is  0.2  is 

Prob{X = 3) = x x x x x 0.2’ x 0.8’ = 0.0512. (3 x 2 x 1)(2 x 1) 

As the binomial distribution plays a .special role in population genetics, its 
derivation is of more than passing interest. Consider first the easier problem 
of finding the probability of a  particular sequence of successes and failures in a 
given experiment. For example, the probability of a success on the first trial, a 
failure on the next trial, successes  on the next two trials,  and finally a failure, 
is 

Prob{SFSSF} = pqppq = p3q2,  

which  is  precisely the rightmost term in Equation B.3 for the special case of 
three successes  in  five trials. It is a small leap to see that this  term is the 
probability of a particular sequence of i successes and (n - i) failures. 

To obtain  the probability of three successes, we need only calculate the 
number of different  sequences of three S’s and two F’s, which is precisely the 
left hand  term of the binomial probability 

Each of the 10  sequences has exactly the same probability of occurring, so the 
total probability of three successes  is 10 times p3q2.  

The final task is to discover the more general result that  the number of 
sequences with i successes and n - i failures is the binomial coefficient 

n! 
i ! (n  - i)! 

Naturally, there is a trick. First, consider the number of sequences of i successes 
and (n - i) failures when  each  success and failure is labeled. That is, suppose we 
call the three successes  in the example S I ,  SZ, and S3 and  the two failures, 8’1 
and FZ . The sequence S1  F1 S’S3 FZ is now  viewed aa different  from the sequence 
S ~ F I S ~ S ~ F ~ .  (Without the labeling, these two are  the same sequence.) There 
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are n! distinct, labeled sequences. The easiest way to see this is  by noting that 
there  are n differently labeled successes or failures that could appear in the first 
position of the sequence, n - 1 that could appear in the second position, n - 3 
in the  third, etc., for a total of n! distinct sequences. 

But we don't care about the labeling, so we must divide the number of 
labeled sequences by the number of different  sequences of just  the successes and 
just the failures. There  are i! differently labeled orderings of the labeled S's and 
(n - i)! different labelings of the failures. Thus,  the  total number of unlabeled 
orderings of i successes and n - i failures is 

n! 
i!(n - i)! ' 

as was to be  shown. As the probability of any one of these unlabeled sequences 
is piqn-i, the  total probability of i successes  is as givee in Equation B.3. 

The mean of the binomial distribution is 
n 

If you  love algebra, proving this will be a delight. Otherwise, a simple derivation 
is  given  on page 163. The derivation of the variance, 

may be found on page 163. 

Poisson random variable 

These random variables can take values 0,1, I . . , cc with probabilities 

Prob{X = i} = -. e-ppi 

i! 
Poisson random variables are obtained by taking the limit of binomial random 
variables as n + cc and p + 0 with the mean p = np  remaining fixed.  To 
convince  yourself that  this is true, set p = p/n  in Equation  B.3  and use the 
facts that 

lim (1 - E)n = e-p  
n+oo 

and 
n! 

(n - i)! na 

to obtain  Equation B.4.  Poisson random variables are used to describe situations 
where there many opportunities to succeed (n is large),  the probability of success 
on  any one trial is small (p is small),  and the outcomes of separate  trials  are 
independent. 
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The mean of the Poisson distribution is 
O0 e - P p i  xi- = p .  

a .  

Surprisingly, the variance is equal to p as well. Both of these moments may  be 
obtained from the binomial moments by setting p = p / n  and  letting n + W 

while holding p fixed. Try it, you'll  like it! 
Poisson random variables are unusual in that  the sum of two Poisson random 

variables is also a Poisson random variable. If X is Poisson with mean pz and 
Y is an independent Poisson random variable with mean pya then X + Y is 
Poisson with mean ;Ux + py. The proof  is not difficult. Perhaps you can see why 
it  must be true by thinking of a Poisson as a large number of opportunities for 
rare events to occur. 

Geometric  random variable 

i = O  

The geometric random variable, which can take on the values 1,2,. . . , W, 
describes the time of the first success  in a sequence of independent trials with 
the probability of success being p and  the probability of failure, q = 1 - p, 

Prob{X = i} = qi"lp. (B.5) 

The mean of the geometric distribution is l /p and  the variance is q/p2. 

Correlated random variables 

Suppose we have an experiment with each outcome associated with two random 
variables, X and Y. Their outcomes may be summarized as follows: 

P3 1 P32 P33 

marginal p.1 P.2 p.3 * m *  

The marginal distribution for X is 

Prob{X = xi} = pi. = c p i j .  
j 

The marginal distribution allows  us to write the mean of X its 

i j  i 
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The variance of X and  the moments of Y are  obtained in a similar fashion. 
The covariance of X and Y is  defined as 

The covari .ance is a measure of the tendency of two random vari .ables to vary 
together. If, for example, X and Y tend to-be large and small together,  then 
their covariance will be positive. If when X is large, Y tends to be small,  their 
covariance will be negative. If the two random variables are independent,  their 
covariance is zero (see below). 

The correlation coefficient of X  and Y is defined to be 

p = Corr{X,Y} = Cov{X, Y} 
&r{X}Var{Y}' 

The correlation coefficient  is always between minus one and  one, -1 5 p 5 1. 
The  random variables X  and Y are said to be independent if 

If they are independent,  then  their covariance is zero: 

(Two random variables with zero covariance are not necessarily independent.) 
For example, in the generalized Hardy-Weinberg we have 

Genotype: AlAl , A 1 A 2   A 2 A 2  
Fkequency: 5 1 1   5 1 2   5 2 2  

We can imagine the  state of each of the two gametes in a zygote as being a 
(correlated)  random variable that equals one if the gamete is A 1  and zero if it 
is A 2 :  
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The moments are 

P'P 
u2 = pq 

COV{X) Y} = x11 - p2 

The expression for the correlation is the same as for F ;  hence F is often called 
the correlation of uniting gametes. 

Operations on random variables 

The simplest, (nontrivial) operation that can be performed on a random variable 
is to multiply it by a number and  add  another number. Let Y be the transformed 
random variable Y = aX + b. The mean of Y is 

E{Y} = a E { X }  +b. 03.9) 

The proof  is as follows: 

i 

i i 

= a E { X }  + b. 

The variance is 

Var{Y} = a 2 v a r { x } ,  (B.10) 

which  may  be obtained using an argument similar to  that used  for the mean. 
The  distribution of the sum of random variables is often difficult to calculate. 

However, the mean and variance of a sum  are relatively easy to obtain. Let 
Z = X + Y .  The mean of Z may  be  derived as follows: 

i j  

i 

from which we conclude, using Equation B.6, 

E { X  + Y} = E { X }  + E{Y}. (B.ll) 

Notice that this result is true no matter  what dependence there may be between 
X and Y. 
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Equation B. l l  may be used to find the expectation of a binomial random 
variable. Recall that  the binomial random variable represents the number of 
successes  in n independent trials when the probability of success on any partic- 
ular trial is p .  We can write the number of successes as 

x = x1 +x2 +.*-+x, ,  
where Xi is a Bernoulli random variable that is one if a success occurred on the 
ith trial  and zero otherwise. As the expectation of Xi is p ,  we have 

E{X} = nE{Xi} = np, 

which is, as claimed earlier, the mean of a binomial distribution. 
The variance of a sum is 

from  which we conclude that 

Var{X + Y} = Var{X} + 2Cov{X,Y} + Var{Y}. (B.12) 

Using the same sort of argument, you can show that 

Var{alX1+ ~~2x2) = a:Var{Xl} + a i ~ a r { ~ z }  + 2alazCov{~1, X,) 
(B.13) 

and 

Cov{a1X1 + a2X2, blYl + b2Y2} = 
alblCov{Xl,Yl} + a1bzCov{X1,Yz} 

+ C A ~ ~ ~ C O V { X ~ , Y ~ }  + C A ~ ~ ~ C O V { X ~ , Y ~ } .  (B.14) 

An important special case  concerns independent random variables, Xi, for 
which the variance of the sum is the sum of the variances, 

This may be used to show that  the variance of the binomial distribution is  npq 
exactly as we did to obtain the mean. 

Noteworthy continuous random variables 

Normal random  variable 

Continuous random variables take values  over a range of real. numbers. 
For example, normal random variables can take on any value  in the interval 
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(-W, W).  With so many possible  values, the probability that a continuous 
random variable takes on a particular value is zero. Thus, we will  never find 
ourselves writing “Prob{X = S} =” for a continuous random variable. Rather, 
we  will write the probability that  the random variable takes on a value in a spec- 
ified interval. The probability is determined by the probability density function, 
f(x). Using the probability density function, we can write 

b 
Prob{a < X < b }  = l f(x)dx. 

If X  takes on values in the interval (a, p), then 

lD f(s)dx = 1. 

p = E{X} = J, xf(x)dx. 

The mean of a continuous random variable is  defined as  it is for discrete  random 
variables: 

P 

Similarly, the variance is 

The most important of the continuous random variables is the normal or 
Gaussian random variable, whose probability density function is 

where the parameters p and uz are, in fact,  the mean and variance of the 
distribution, respectively. For example, it is  possible to show that 

The normal random variable with mean zero and variance one is called a stan- 
dardized normal random variable. Its probability density function is 

e - x = / Z  

6‘ 

Bivariate normal random variable 

(B.15) 

The bivariate normal distribution for  two (correlated) random variables X 
and Y is characterized by two means, px and py , two variances, and oi, and 
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the correlation coefficient, p. The probability density for the bivariate normal 
is the daunting 

1 (?--Q/2, 

274- 

where 

q = 2 [ ( E $ ) 2 - 2 p ( E $ ) ( y ) + ( " ) 2 ]  1 - p2 9 - PY 

Fortunately, we  will not have to use this formula in this book. Rather, we 
require only some of its moments and properties. 

The expected value of Y, given that X = x, is  called the regression of Y on 
X and is 

where the regression coefficient  is 

(B.17) 

Expressed as  the deviation from the mean,  this becomes 

E { Y  I x = z} - pu = P(x - P o ) .  (B.18) 

This is the form of the regression of 9 on z that is most used  in quantitative 
genetics. 
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